bài này làm kiểu gì ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi x=5 thì \(11x-52=11\cdot5-52=55-52=3>0\)
=>Đúng
Khi x=5 thì \(6x-29=6\cdot5-29=30-29=1>0\)
=>6x-29>0 đúng
Khi x=5 thì 5-2=3<=0(sai)
=>x-2<=0 là đáp án sai duy nhất, hai cái còn lại đúng
ĐKXĐ: \(x\ne\pm y\)
Phương trình ở dưới thiếu vế phải rồi bạn
\(a.\left\{{}\begin{matrix}\left(x+3\right)^2-2y^3=6\\3\left(x+3\right)^2+5y^3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(x+3\right)^2-6y^3=18\\3\left(x+3\right)^2+5y^3=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)^2-2y^3=6\\11y^3=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)^2+2=6\\y^3=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)^2=4\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\\y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\\y=-1\end{matrix}\right.\)
Vậy: \(\left(x;y\right)=\left\{\left(1;-1\right);\left(-7;-1\right)\right\}\)
\(b.\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\3x^2-\left(y^2+2y\right)=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\6x^2-2\left(y^2+2y\right)=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\7x^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\x^2=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(y^2+2y\right)=6\\x=\pm2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2+2y-3=0\\x=\pm2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=-3\end{matrix}\right.\\x=\pm2\end{matrix}\right.\)
Vậy: \(\left(x;y\right)=\left\{\left(2;1\right);\left(2;-3\right);\left(-2;1\right);\left(-2;-3\right)\right\}\)
\(\left\{{}\begin{matrix}3x+ay=5\\2x+y=b\end{matrix}\right.\)
a) Để hpt có nghiệm duy nhất thì:
\(\dfrac{3}{2}\ne\dfrac{a}{1}\\ \Leftrightarrow a\ne\dfrac{3}{2}\)
b) Để hpt vô nghiệm thì:
\(\dfrac{3}{2}=\dfrac{a}{1}\ne\dfrac{5}{b}\\ < =>\left\{{}\begin{matrix}a=\dfrac{3}{2}\\\dfrac{3}{2}\ne\dfrac{5}{b}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b\ne\dfrac{10}{3}\end{matrix}\right.\)
c) Để hpt vô số nghiệm thì:
\(\dfrac{3}{2}=\dfrac{a}{1}=\dfrac{5}{b}\\ =>\left\{{}\begin{matrix}a=\dfrac{3}{2}\\\dfrac{5}{b}=\dfrac{3}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{10}{3}\end{matrix}\right.\)
\(a.A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\left(x\ne\pm1;x\ne\dfrac{1}{2}\right)\\=\left[\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right]\cdot\dfrac{x^2-1}{1-2x}\\ =\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\dfrac{x^2-1}{1-2x}\\ =\dfrac{-2}{\left(1-x\right)\left(1+x\right)}\cdot\dfrac{x^2-1}{1-2x}\\ =\dfrac{2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{1-2x}\\ =\dfrac{2}{1-2x}\)
b) Để A nguyên thì 2 ⋮ 1 - 2x
Mà: 1 - 2x lẻ với mọi x nguyên
=> \(1-2x\in\left\{1;-1\right\}\)
=> \(2x\in\left\{0;2\right\}\)
=> \(x\in\left\{0;1\right\}\)
Kết hợp với đk => x = 0
c) Để \(\left|A\right|=A\Rightarrow A\ge0\)
\(=>\dfrac{2}{1-2x}\ge0\\ =>1-2x>0\\ =>2x< 1\\ =>x< \dfrac{1}{2}\)
Kết hợp với đk `=>x<1/2;x≠-1`
Gọi số cần tìm có dạng là \(\overline{ab}\)
Chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nên b=2a
Nếu thêm chữ số 1 vào giữa hai chữ số ấy thì được số mới lớn hơn số ban đầu là 370 nên \(\overline{a1b}-\overline{ab}=370\)
=>100a+10+b-10a-b=370
=>90a=360
=>a=4
=>\(b=2\cdot4=8\)
Vậy: Số cần tìm là 48
Gọi chữ số hàng chục là $x$ ($x\in\mathbb{N}^*$)
Chữ số hàng đơn vị là: $2x$
Khi đó số cần tìm là: $\overline{x(2x)}$
Vì nếu thêm chữ số 1 xen giữa hai chữ số ấy thì được số mới lớn hơn số ban đầu là 370 nên ta có phương trình:
$\overline{x1(2x)}-\overline{x(2x)}=370$
$\Leftrightarrow (100x+10+2x)-(10x+2x)=370$
$\Leftrightarrow 102x+10-12x=370$
$\Leftrightarrow 90x=360$
$\Leftrightarrow x=4$ (tmdk)
Khi đó, chữ số hàng đơn vị là: $2\times4=8$
Vậy số cần tìm là 48.
#$\mathtt{Toru}$
Điều kiện xác định: \(a;b\ge0\)
Nhận xét:
\(2\sqrt{ab}\ge0\\ \Leftrightarrow a+b\le a+2\sqrt{ab}+b\\ \Leftrightarrow\left(\sqrt{a+b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2\\ \Leftrightarrow\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\)
Vậy...
\(\dfrac{3}{4}x-6< =0\)
=>\(\dfrac{3}{4}x< =6\)
=>\(x< =6:\dfrac{3}{4}=6\cdot\dfrac{4}{3}=8\)