K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

Hình như đề sai nha bạn  

khi đó x + y + z = 1 ; x3 + y3 + z3 = 3

mà (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x) 

<=> 13 = 3 + 3(x + y)(y + z)(z + x)

<=> 3(x + y)(y + z)(z + x) = -2 (vô lý vì 3(x + y)(y + z)(z + x) > 0) 

26 tháng 3 2022

Iuukweewddukhkhuckekwhkuekcwuhwdikeuldkhscuhkjdcshudscjhukidschfshjrskdhjfursiuhukerfhevkhgyrukeaguukeeafduuhkafeuiehfugkurfrfaegukurgfeuwukfegukuqrfrekgquufrequgkuefqehhmeihuewkfkihurfewuhkifrekwhhubrhefjwkhjbkefeqhebfeqkehbfjkeahejchkeajhhkeceahjbkceeabhjrevahkbjreahhjvjbhkvfhhjkfvsrhhkjbhkrjfeahjhkvreajhbkvesrhvbjerahjbkrfeajhhkefrahhikferahhkjfreahhrfeajfrehuiqkrhehiakfhfhhrefkiuahiukrfea

25 tháng 3 2022

bfghgfgdfgffffffffffffffgf

25 tháng 3 2022

Mình đang thắc mắc chỗ chứng minh \(\widehat{EOC}=\widehat{ECD}\), còn mấy chỗ còn lại mình làm được rồi.

Cho quang hệ gồm hai thấu kính O1 và O2 được đặt đồng trục chính. Thấu kính O2 có tiêu cự f2 = 9cm, vật sáng AB vuông góc với trục chính của quang hệ, trước thấu kính O1 và cách O1 một khoảng d1 = 12 cm (A thuộc trục chí nh của quang hệ). Thấu kính O2 ở sau O1. Sau thấu kính O2 đặt một màn ảnh E cố định vuông góc với trục chính của quang hệ, cách O1 một khoảng a = 60 cm. Giữ vật AB, thấu...
Đọc tiếp

Cho quang hệ gồm hai thấu kính O1 và O2 được đặt đồng trục chính. Thấu kính O2 có tiêu cự f2 = 9cm, vật sáng AB vuông góc với trục chính của quang hệ, trước thấu kính O1 và cách O1 một khoảng d1 = 12 cm (A thuộc trục chí nh của quang hệ). Thấu kính O2 ở sau O1. Sau thấu kính O2 đặt một màn ảnh E cố định vuông góc với trục chính của quang hệ, cách O1 một khoảng a = 60 cm. Giữ vật AB, thấu kính O1 và màn ảnh E cố định, dịch thấu kính O2 dọc theo trục chính của quang hệ trong khoảng giữa thấu kính O1 và màn người ta tìm được hai vị trí của thấu kính O2 để ảnh của vật cho bởi quang hệ hiện rõ nét trên màn E. Hai vị trí này cách nhau 24 cm.

1. Tính tiêu cự của thấu kính O1.

2. Tịnh tiến AB trước thấu kính O1, dọc theo trục chính của quang hệ. Tìm khoảng

cách giữa hai thấu kính để ảnh của vật cho bới quang hệ có độ cao không phụ thuộc vào vị trí của vật AB.

3
23 tháng 3 2022

Khoảng cách ảnh AB tới thấu kính \(d_2\):

\(\dfrac{1}{f_2}=\dfrac{1}{d_2}+\dfrac{1}{d_2'}\Rightarrow d_2'=\dfrac{d_2\cdot f_2}{d_2-f_2}=\dfrac{9d_2}{d_2-9}\left(cm\right)\)

Di chuyển thấu kính lại gần màn ảnh 24 cm:

\(\Rightarrow d_2"=\dfrac{\left(d_2+24\right)\cdot f_2}{d_2+24-f_2}=\dfrac{9\left(d_2+24\right)}{d_2+15}\left(cm\right)\)

Khoảng cách giữa ảnh AB và O1 là:

\(d_2+\dfrac{9d_2}{d_2-9}=d_2+24+\dfrac{9\left(d_2+24\right)}{d_2+15}\)

\(\Rightarrow d_2^2+6d_2-216=0\Rightarrow\left[{}\begin{matrix}d_2=12cm\\d_2=-18cm\left(loại\right)\end{matrix}\right.\)

Ảnh AB cách thấu kính O1:

\(d_1'=60-12-36=12cm\)

Tiêu cự thấu kính O1:

\(\dfrac{1}{f_1}=\dfrac{1}{d_1}+\dfrac{1}{d_1'}=\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{6}\)

\(\Rightarrow f_1=6cm\)

Tịnh tiến AB trước thấu kính O để ảnh độ cao không phụ thuộc vào vị trí của vật.

Xảy ra\(\Leftrightarrow\)Tiêu điểm hai thấu kính trùng nhau.

\(\Leftrightarrow O_1O_2=f_1+f_2=6+9=15cm\)

23 tháng 3 2022

cau co phai la hung khong

23 tháng 3 2022

Ta có P = xy = x(k - x) = -x2 + xk

\(-x^2+2x\frac{k}{2}-\frac{k^2}{4}+\frac{k^2}{4}=-\left(x-\frac{k^2}{4}\right)^2+\frac{k^2}{4}\le\frac{k^2}{4}\)

=> \(P_{max}=\frac{k^2}{4}\left(\text{Dấu "=" khi }x=\frac{k^2}{4}\right)\)

Vì tam giác ABC vuông tại C ; đường cao CM=>  \(MC^2=MA.MB\)

\(MC^2=MA\left(AB-MA\right)=-MA^2+9MA\le\frac{81}{4}\)

=> \(MC\le\frac{9}{2}\)

Dấu "=" xảy ra khi MA = MB = 4,5 cm hay M trung điểm BC 

23 tháng 3 2022

Hai tam giác AEF và ABF có chung đường cao hạ từ F nên ta có \(\frac{S_{AEF}}{S_{ABF}}=\frac{AE}{AB}=\frac{4}{6}=\frac{2}{3}\)(1)

Hai tam giác ABF và ABC có chung đường cao hạ từ B nên ta có \(\frac{S_{ABF}}{S_{ABC}}=\frac{AF}{AC}=\frac{4}{9}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{S_{AEF}}{S_{ABF}}.\frac{S_{ABF}}{S_{ABC}}=\frac{2}{3}.\frac{4}{9}\)\(\Rightarrow\frac{S_{AEF}}{S_{ABC}}=\frac{8}{27}\)\(\Rightarrow S_{AEF}=\frac{8}{27}S_{ABC}=\frac{8}{27}.27=8\left(cm^2\right)\)

Vậy \(S_{AEF}=8cm^2\)

23 tháng 3 2022

Bạn vào thống kê hỏi đáp của mình xem câu trả lời nhé. Nó chưa duyệt lên.

22 tháng 3 2022

Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{10}=\dfrac{1}{d'}-\dfrac{1}{10}\)

\(\Rightarrow d'=5cm\)

22 tháng 3 2022

Gọi số mol Etilen là x ; số mol Axetylen là y 

Phương trình : C2H4 + Br2 --> C2H4Br2 

                          1          : 1     :         1 

                         x            x 

Lại có  C2H2 + 2Br2 --> C2H4Br4 

            1       :       2    :      1 

            y        :     2y

mà Vkhí = 6,72 (l)

=> 22,4x + 22,4y = 6,72

<=> x + y = 0,3 (1) 

Lại có \(m_{Br_2}=80\left(g\right)\Leftrightarrow n_{Br_2}=0,5\left(mol\right)\Leftrightarrow x+2y=0,5\)(2) 

Từ (1) ; (2) => x = 0,1 ; y = 0,2 

\(\frac{V_{C_2H_4}}{V_{\text{Hỗn hợp khí }}}=\frac{0,1.22,4}{6,72}=0,3333=33,33\%\)

\(\frac{V_{C_2H_2}}{V_{\text{hỗn hợp khí }}}=\frac{0,2.22,4}{6,72}=66,67\%\)

=> Chọn B