Bài 25 (trang 111 SGK Toán 9 Tập 1)
Cho đường tròn tâm $O$ có bán kính $OA = R$, dây $BC$ vuông góc với $OA$ tại trung điểm $M$ của $OA$.
a) Tứ giác $OCAB$ là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại $B$, nó cắt đường thẳng $OA$ tại $E$. Tính độ dài $BE$ theo $R$.
\(a,\) Tứ giác \(OCAB\)l là hình thoi.
Ta có: \(OA\perp OB\)\(\Rightarrow\)\(MB=MC\)
mà \(MA=MO\)nên tứ giác \(OCAB\)là hình bình hành.
Hình bình hành này có hai đường chéo vuông góc nên là hình thoi.
\(b,\) Ta có: \(BA=BO\) ( hai cạnh hình thoi ) \(BO=OA\)( bán kính tam giác ) nên tam giác \(ABO\)là tam giác đều.
\(\Rightarrow\)\(\widehat{BOA}=60^o\)
Ta có \(EB\)là tiếp tuyến \(\Rightarrow\)\(EB\perp OB\)
Xét tam giác \(BOE\)vuông tại \(B,\)có:
\(BE=BO.tg60^o=R.tg60^o=R\sqrt{3}\)
a) Bán kính OAOA vuông góc với dây BCBC nên
MB=MCMB=MC
Tứ giác OCABOCAB là hình bình hành (vì MO=MAMO=MA, MB=MCMB=MC), lại có OA\perp BCOA⊥BC nên tứ giác đó là hình thoi.
b) BE=Căn 3 x R