Tìm min, max
y = \(2-3\sqrt{5+2cos\left(2x+\frac{\pi}{4}\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm
Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.
\(f\left(x\right)=-x^3-2x^2+mx-3\)
\(f'\left(x\right)=-3x^2-4x+m\)
\(f'\left(x\right)>0\Leftrightarrow-3x^2-4x+m>0\Leftrightarrow m>3x^2+4x\)(đúng với mọi \(x\in\left(0,1\right)\))
suy ra \(m\ge max\left(3x^2+4x\right)\)với \(x\in\left[0,1\right]\).
Xét hàm \(g\left(x\right)=3x^2+4x\)với \(x\in\left[0,1\right]\).
\(g'\left(x\right)=6x+4\)
\(g'\left(x\right)=0\Leftrightarrow6x+4=0\Leftrightarrow x=-\frac{2}{3}\notin\left[0,1\right]\).
\(g\left(0\right)=0,g\left(1\right)=7\)
suy ra \(g_{max}=7\)
do đó \(m\ge7\).
Mà \(m\)nguyên, \(m\in\left[-2021,2021\right]\)nên có tổng cộng: \(2021-7+1=2015\)giá trị của \(m\)thỏa mãn.
tìm tổng tất cra các giá trị của tham số thực m để hàm số y=|mx-1|-x^2 có giá trị lớn nhất bằng 10/8
Ta sẽ lần lượt đến \(4\)ngôi chùa, mỗi ngôi chùa ngẫu nhiên để lại \(3\)cái cốc.
Số cách đặt là: \(12C3.9C3.6C3.3C3=369600\)(cách)
ta có
\(-1\le cos\left(2x+\frac{\pi}{4}\right)\le1\Leftrightarrow-2\le2cos\left(2x+\frac{\pi}{4}\right)\le2\)
\(\Leftrightarrow5\le5+2cos\left(2x+\frac{\pi}{4}\right)\le7\Leftrightarrow\sqrt{5}\le\sqrt{5+2cos\left(2x+\frac{\pi}{4}\right)}\le\sqrt{7}\)
Vậy \(2-3\sqrt{5}\ge y\ge2-3\sqrt{7}\)
vậy \(\hept{\begin{cases}min\left(y\right)=2-3\sqrt{7}\\max\left(y\right)=2-3\sqrt{5}\end{cases}}\)