3,(6) la nhieu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N E F K H
a) Xét tam giác AMN và CMB có: MB = MN ; góc BMC = NMA; MC = MA
=> tam giác AMN = tam giác CNB ( c - g - c)
b) Ta có ME = MB - BE; MF = MN - NF
Mà MB = MN; BE = NF (gt)
Nên ME = MF
Xét tam giác MAF và MCE có: MA = MC; góc AMF = CME; MF = ME
=> tam giác MAF = tam giác MCE ( c - g - c)
=> AF = CE ( 2 cạnh tương ứng)
c) Ta có góc NAM = MCB ( tam giác AMN = CMB)
Mà hai góc này ở vị trí So le trong nên AN // BC
ta có MH | BC nên MH | AN tại Km => góc AKM = 90o
Ta có :
Áp dụng t/c /a/+/b/>(=)/a+b/ (Dấu bằng xảy ra <=>a.b=0) ta có:
y=/2a-1/+/a/>(=)/2a-1+a/=/3a-1/=x
Vậy y>(=)x
x và y có thể bằng nhau khi:
(2a+1).a=0
Hiền Hòa mac xac ta do ba tam nhieu chuyen lelelel
theo bài ra ta có:
x/2=y/-5 và x-y=-7
theo t/c dãy tỉ số bằng nhau ta có :
x/2=y/-5=x-y/2-(-5)=-7/7=-1
do đó:
x/2=-1=>x=-2
y/-5=-1=>y=5
vậy (x=-2;y=5)
\(x:2=y:\left(-5\right)=>\frac{x}{2}=\frac{y}{-5}\)
áp .. ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=-\frac{7}{7}=-1\)
=>x/2=-1=>x=-2
=>y/-5=-1=>y=5
3x=2y=>\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{10}=\frac{y}{15}\)
4y=5z=>\(\frac{y}{5}=\frac{z}{4}\)=>\(\frac{y}{15}=\frac{z}{12}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y-z}{10+15-12}=\frac{78}{13}=6\)
=>\(\frac{x}{10}=6=>x=60\)
=>\(\frac{y}{15}=6=>y=90\)
=>\(\frac{z}{12}=6=>z=72\)
3x=2y
=>x/2=y/3=>x/10=y/15 (1)
4y=5z
=>y/5=z/4=>y/15=z/12 (2)
từ 1 và 2
=>x/10=y/15=z/12
áp .. ta có:
x/10=y/15=z/12=x+y-z/10+15-12=78/13=6
=>x/10=6=>x=60
=>y/15=6=>y=90
=>z/12=6=>z=72
\(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(3.P=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2004}}\)
=> \(3.P-P=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
=> \(2.P=1-\frac{1}{3^{2005}}<1\)
=> P < 1/2
Vậy....
\(\frac{11}{3}\)
\(\frac{36}{9}\)