Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài hai cạnh góc vuông lần lượt là \(a,b\left(cm\right);a,b>0\).
Độ dài cạnh huyền là: \(15.2=30\left(cm\right)\)
Ta có hệ:
\(\hept{\begin{cases}a+b=42\\a^2+b^2=900\end{cases}}\Leftrightarrow\hept{\begin{cases}b=42-a\\a^2+\left(42-a\right)^2=900\end{cases}}\Leftrightarrow\hept{\begin{cases}b=42-a\\a=18;a=24\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=18,b=24\\a=24,b=18\end{cases}}\)
Diện tích tam giác đó là: \(\frac{18.24}{2}=216\left(cm^2\right)\)
đk: \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)
\(A=\frac{x}{\sqrt{xy}-y}+\frac{y}{\sqrt{xy}+x}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\sqrt{y}}+\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{x}}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+y\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)-\left(x+y\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\sqrt{xy}}\)
\(A=\frac{x^2+x\sqrt{xy}+y\sqrt{xy}-y^2-x^2+y^2}{\left(x-y\right)\sqrt{xy}}\)
\(A=\frac{\left(x+y\right)\sqrt{xy}}{\left(x-y\right)\sqrt{xy}}=\frac{x+y}{x-y}\)
đk: \(x\ge0;x\ne16\)
\(\frac{x\sqrt{x}-2\sqrt{x}+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}-\frac{\sqrt{x}+8}{\sqrt{x}-4}\)
\(=\frac{x\sqrt{x}-2\sqrt{x}+28-\left(\sqrt{x}-4\right)^2-\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x\sqrt{x}-2\sqrt{x}+28-x+8\sqrt{x}-16-x-9\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x\sqrt{x}-2x-3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\left(x\sqrt{x}-x\right)-\left(x-\sqrt{x}\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
:vvv
Hok tốt
MO là trung trực của AI => MO vuông góc AI, có BI vuông góc AI => MO || BI
Ta thấy MA.MI là hai tiếp tuyến kẻ từ M đến (O), MCD là cát tuyến của (O), do đó (ICAD)=−1(ICAD)=−1
Vì B nằm trên (O) nên B(ICAD)=−1B(ICAD)=−1, mà MO || BI, MO cắt BC,BA,BD tại E,O,F nên O là trung điểm EF.
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
Theo bài ra, ta có:
x+y+z=3
\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cau-chy ngược dấu ta có:
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu '=' xảy ra <=> a=3;b=2;c=1
*Bài khá giống bạn kia :)
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
\(\Rightarrow x+y+z=3\)
BĐT cần chứng minh trở thành :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cô Si ngược dấu ta có :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\)
\(1,A=\frac{2\sqrt{25}-5}{\sqrt{25}}\)
\(A=\frac{10-5}{5}\)
\(A=1\)
\(B=\frac{x+\sqrt{x}-\sqrt{x}+1-1}{x-\sqrt{x}}\)
\(B=\frac{x}{x-\sqrt{x}}\)
\(B=\frac{\sqrt{x}^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(3,P=AB=\frac{2\sqrt{x}-5}{\sqrt{x}}\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}-5}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}-2-3}{\sqrt{x}-1}\)
\(P=2-\frac{3}{\sqrt{x}-1}\)
để P là N
\(3⋮\sqrt{x}-1\)
\(\sqrt{x}-1\inƯ\left(3\right)\)
bạn lập bảng thì ra đc x={3,-1,}