Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1^3+3^3+5^3+...+n^3\)
\(A=1^3+2^3+3^3+...+n^3\)
\(A=\dfrac{n^2.\left(n+1\right)^2}{4}\)
\(B=2^3+4^3+6^3+...+\left(n-1\right)^3\)
\(B=2^3.\left(1^3+2^3+3^3+...+\left(\dfrac{n-1}{2}\right)^3\right)\)
\(B=8.\left(\dfrac{\left(n-1\right)^2}{4}.\dfrac{\left(n+1\right)^2}{4}\right)\)
\(B=\dfrac{\left(n-1\right)^2.\left(n+1\right)^2}{8}\)
\(\Rightarrow A-B=1^3+3^3+5^3+...+n^3\)
\(\Rightarrow1^3+3^3+5^3+...+n^3=\dfrac{\left(n+1\right)^2}{4}.\left(n^2-\dfrac{\left(n-1\right)^2}{2}\right)\)
Bài này bạn đã đăng 1 lần rồi thì hạn chế không đăng lại tránh gây loãng box toán.
Lời giải:
$f(x)=(x-1)g(x)$
$3x^3-2x^2+x+5=(x-1)(3x^2+ax+b)$. Cho $x=1$ thì:
$3.1^3-2.1^2+1+5=0$
Hay $7=0$ (vô lý)
Vậy không tồn tại số $a,b$ nào thỏa mãn.
a) Xét \(\Delta ABE\) và \(\Delta HBE\):
BE chung
\(\widehat{ABE}=\widehat{EBH}\)
\(\widehat{EAB}=\widehat{EHB}=90^o\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)
\(\widehat{ACB}=90^o-\widehat{B}=30^o\)
\(\Rightarrow\Delta EBC\) cân tại E
Mà EH vuông góc BC
\(\Rightarrow HB=HC\)
c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)
\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)
\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)
\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)
\(\Rightarrow\Delta EHK\) đều
d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)
\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)
\(\Rightarrow IE>EH\)
a) Xét ΔABEΔABE và ΔHBEΔHBE:
BE chung
ˆABE=ˆEBHABE^=EBH^
ˆEAB=ˆEHB=90oEAB^=EHB^=90o
⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)
b) ˆEBH=12ˆB=30oEBH^=12B^=30o
ˆACB=90o−ˆB=30oACB^=90o−B^=30o
⇒ΔEBC⇒ΔEBC cân tại E
Mà EH vuông góc BC
⇒HB=HC⇒HB=HC
c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o
KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o
ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o
⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o
⇒ΔEHK⇒ΔEHK đều
d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH
ΔIAEΔIAE vuông ở A ⇒IE>AE
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
\(x^2-6x=0\)
\(\Rightarrow x.\left(x-6\right)=0\)
\(\Rightarrow x=0\) hoặc \(x-6=0\)
\(\Rightarrow x=0\) hoặc \(x=6\)
g(x) = x2 - 6x = 0
<=>g(x) = x(x - 6) = 0
<=>x=0 => x = 0
x-6=0 => x = 6
- Vậy x ϵ {0;6} là nghiệm của đa thức g(x)
...
xxc eg e smft drd