Chứng minh không tồn tại 2 số nguyên a,b sao cho: \(\left(a+b\sqrt{2}\right)^2=2016+2017\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\Leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow\left(x-y-z\right)+2\sqrt{3}=2\sqrt{yz}\)\(\Rightarrow\left(x-y-z\right)^2+4\sqrt{3}\left(x-y-z\right)+12=4yz\left(1\right)\)
+TH1: Nếu \(x-y-z\ne0\Rightarrow\sqrt{3}=\frac{4yz-\left(x-y-z\right)^2-12}{4\left(x-y-z\right)}\left(2\right)\) (vô lý vì \(x,y,z\inℕ\Rightarrow VP\left(2\right)\) là số hữu tỉ)
+TH2: Nếu \(x-y-z=0\Rightarrow\left(1\right)\Leftrightarrow\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}\left(tm\right)}\)
\(x^2-1+\sqrt{143}=a\Leftrightarrow x^2-1=a-\sqrt{143}\)
\(\frac{1}{x^2-1}-\sqrt{143}=\frac{1}{a-\sqrt{143}}-\sqrt{143}=\frac{a+\sqrt{143}}{a^2-143}-\sqrt{143}\)
\(=\frac{a}{a^2-143}+\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)
Để \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên thì \(\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)hữu tỉ suy ra \(\frac{1}{a^2-143}-1=0\Leftrightarrow a=\pm12\).
Từ đây suy ra giá trị của \(x\).
giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)
\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)
Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)
\(\Rightarrow17a+3b+c=6a+b=0\)
\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)
Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)
pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)
gấu koala có avata chim cánh cụt
vô tay
kk:))