K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

\(\frac{1}{\sqrt{5}+\sqrt{7}}=\frac{\sqrt{5}-\sqrt{7}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}=\frac{\sqrt{5}-\sqrt{7}}{-2}\)

\(=\frac{\sqrt{7}-\sqrt{5}}{2}\)gửi lun 1 lượt đi, duma =(( 

20 tháng 6 2021

trục căn thức ở mẫu 

\(\frac{1}{\sqrt{5}+\sqrt{7}}=\frac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\frac{\sqrt{7}-\sqrt{5}}{2}\)

20 tháng 6 2021

Ta thấy pt(1) có nghiệm do ac = -1 < 0

Gọi x1 ; x2 là nghiệm của (1) , ta có : x1 + x= -5 ; x1x=-1

Gọi y1 ; y2 là các nghiệm của pt cần lập , ta được : y1 + y2 = x14 + x2; y1y2 = x14 . x24

Ta có : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12.x22

= [( x1 + x2 )2 - 2x1x2 ]2 - 2(x1x2)2 = 729 - 2 = 727

y1.y2 = x14 . x24 = ( x1 . x2 )4 = 1

Vậy pt cần lập là y2 - 727y + 1 = 0

DD
20 tháng 6 2021

\(\Delta=5^2+4=29>0\)nên phương trình có hai nghiệm phân biệt \(x_1,x_2\).

Theo Viete: 

\(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=-1\end{cases}}\)

\(x_1^4x_2^4=\left(-1\right)^4=1\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left(25+2\right)^2-2=727\)

Theo định lí Viete đảo, phương trình bậc hai nhận \(x_1^4,x_2^4\)là nghiệm là: 

\(X^2-727X+1=0\)

20 tháng 6 2021

trục căn thức nhé bạn 

\(\frac{1}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{3}-\sqrt{2}\)

20 tháng 6 2021

tính chất nào bạn ?

Thiếu đề rồi nhé !

20 tháng 6 2021

mik bít cách

20 tháng 6 2021

mik bít cách

20 tháng 6 2021

A B C H D 12 16

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2=144+256=400\Rightarrow BC=20\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{144}{20}=\frac{36}{5}\)cm 

\(\Rightarrow HC=BC-HB=20-\frac{36}{5}=\frac{64}{5}\)cm 

Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{20}{12+16}=\frac{20}{28}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{5}{7}AB=\frac{5}{7}.12=\frac{60}{7}\)cm 

\(\Rightarrow HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{48}{35}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{192}{20}=\frac{48}{5}\)cm 

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{48}{5}\right)^2+\left(\frac{48}{35}\right)^2=\frac{4608}{49}\Rightarrow AD=\frac{48\sqrt{2}}{7}\)cm 

DD
20 tháng 6 2021

\(NP=4,5+6=10,5\left(cm\right)\)

Áp dụng tích chất đường phân giác: 

\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).

Áp dụng định lí Pythagore:

\(NP^2=MP^2+MN^2\)

\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)

\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)

\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)

\(HE=NE-NH=4,5-3,78=0,72\)

\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)

20 tháng 6 2021

a) 2a−4b=2(a−2b)2a−4b=2(a−2b)

c) 2ax−2ay+2a=2a(x−y+1)2ax−2ay+2a=2a(x−y+1)

e) 3xy(x−4)−9x(4−x)=3x(x−4)(y+3)3xy(x−4)−9x(4−x)=3x(x−4)(y+3)

b,d xem lại đề

20 tháng 6 2021

không hiểu

 what are you doing?

20 tháng 6 2021

\(\left(2-\sqrt{3}\right)\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{2+\sqrt{3}}\right)\)

\(\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\left(\sqrt{4+\sqrt{3}}\right)\)

\(\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\left(\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)\)

\(\left(\sqrt{3}+1\right)^2\left(2-\sqrt{3}\right)\)

\(\left(4+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)

\(8+2\sqrt{3}-4\sqrt{3}-3\)

\(5-2\sqrt{3}\)

20 tháng 6 2021

a) Ta có  : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)

b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)

\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)

c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)

Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )

Vậy minA = -9 tại m = -4

20 tháng 6 2021

ta có: 193-132\(\sqrt{2}\)=193 - 2.11.6\(\sqrt{2}\)=121 - .2.11.6\(\sqrt{2}\)+ 72=112-2.11.6\(\sqrt{2}\)+ (6\(\sqrt{2}\))2=(11-6\(\sqrt{2}\))2  (đpcm)

chúc bạn học tốt!!!!