ccác bạn giúp mình bài trong ảnh với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: E = \(\frac{x}{\sqrt{x}-1}=\frac{x-1+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
E = \(\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2\sqrt{\left(\sqrt{x}-1\right)\cdot\frac{1}{\sqrt{x}-1}}+2=2+2=4\)(bđt cosi)
Dấu "=" xảy ra <=> \(\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\) <=> \(\left(\sqrt{x}-1\right)^2=1\)
<=> \(\orbr{\begin{cases}\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{cases}}\) <=> \(\orbr{\begin{cases}x=4\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)
Vậy MinE = 4 <=>. x = 4
\(\sqrt{x-3}-2\ne0\)
\(\sqrt{x-3}\ne2\)
\(x\ne7\left(1\right)\)
\(\sqrt{x-3}\ge0\)
\(x\ge3\left(2\right)\)
\(\left(1\right);\left(2\right)< =>x\ge3;x\ne7\)
\(15.a,\sqrt{3}\left(\sqrt{4}+2\sqrt{9}\right)\frac{\sqrt{3}}{2}-\sqrt{150}\)
\(\left(2+2.3\right)\frac{3}{2}-\sqrt{150}\)
\(12-\sqrt{150}\)
\(6\left(2-\sqrt{25}\right)=6\left(-3\right)=-18\)
\(b,\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right).\sqrt{7}+2\sqrt{21}\)
\(\sqrt{196}-\sqrt{84}-7+2\sqrt{21}\)
\(14-\sqrt{21}\left(\sqrt{4}+2\right)-7\)
\(7-\sqrt{21}.4\)
\(7-\sqrt{84}\)
\(c,\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)\)
\(1+\sqrt{2}-\sqrt{3}+\sqrt{2}+2-\sqrt{6}+\sqrt{3}+\sqrt{6}-3\)
\(=2\sqrt{2}\)
\(d,\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)^2-\sqrt{3}+\sqrt{2}\)
\(\sqrt{3}\left(2-\sqrt{6}+3\right)-\sqrt{3}+\sqrt{2}\)
\(\sqrt{3}\left(5-\sqrt{6}-1\right)+\sqrt{2}\)
\(\sqrt{3}\left(4-\sqrt{6}\right)+\sqrt{2}\)
\(4\sqrt{3}-\sqrt{18}+\sqrt{2}\)
\(\sqrt{2}\left(2\sqrt{3}-3+1\right)\)
\(\sqrt{2}\left(2\sqrt{3}-2\right)\)
\(2\sqrt{6}-\sqrt{6}=\sqrt{6}\)
\(\frac{\sqrt{10}+5\sqrt{2}}{\sqrt{5}+1}-6\sqrt{\frac{5}{2}}+\frac{12}{4-\sqrt{10}}\)
\(=\frac{\sqrt{10}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\frac{6\sqrt{10}}{2}+\frac{12\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}\)
\(=\sqrt{10}-3\sqrt{10}+2\left(4+\sqrt{10}\right)=-2\sqrt{10}+8+2\sqrt{10}=8\)
2. \(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{2}-1}+4\sqrt{\frac{3}{2}}+\frac{9}{3+\sqrt{3}}\)
\(=\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\frac{4\sqrt{6}}{2}+\frac{9\left(3-\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\)
\(=\sqrt{6}+2\sqrt{6}+\frac{9\left(3-\sqrt{6}\right)}{9-6}=3\sqrt{6}+3\left(3-\sqrt{6}\right)=9\)
a) Xét ΔAHB có ^AHB = 900 ( AH ⊥ BC ) => ΔAHB vuông tại H
Khi đó : \(\sin B=\sin\widehat{ABH}=\frac{AH}{AB}=\frac{5}{13};\cos B=\cos\widehat{ABH}=\frac{BH}{AB}=\frac{\sqrt{AB^2-AH^2}\left(pythagoras\right)}{AB}=\frac{12}{13}\)
ΔABC vuông tại A => ^B + ^C = 900 => \(\sin C=\cos B=\frac{12}{13}\)
b) Áp dụng hệ thức lượng trong tam giác vuông cho ΔABC vuông tại A ta có :
\(AH^2=BH\cdot HC\Rightarrow AH=\sqrt{BH\cdot HC}=2\sqrt{3}\)
cmtt như a) ta có được ΔAHC vuông tại H
Khi đó : \(\sin C=\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{\sqrt{AH^2+HC^2}}=\frac{\sqrt{21}}{7};\cos C=\cos\widehat{ACH}=\frac{CH}{AC}=\frac{CH}{\sqrt{AH^2+HC^2}}=\frac{2\sqrt{7}}{7}\)ΔABC vuông tại A => ^B + ^C = 900 => \(\sin B=\cos C=\frac{2\sqrt{7}}{7}\)
\(D=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}\)
\(=\sqrt{2}\)
dấu "=" xảy ra khi: \(\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{4-x}=0\end{cases}\orbr{\begin{cases}x=2\\x=4\end{cases}}}\)
vậy MIN \(D=\sqrt{2}\)
\(D=\sqrt{x-2}+\sqrt{4-x}\le\frac{x-2+1+4-x+1}{2}=4\)
dấu "=" xảy ra khi \(x=3\)
vậy \(MAX:D=4\)
\(D=\sqrt{x-2}+\sqrt{4-x}\)
\(\Rightarrow D^2=x-2+2\sqrt{\left(x-2\right)\left(4-x\right)}+4-x=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
*GTNN
Với 2 ≤ x ≤ 4 => \(2\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Leftrightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\)
hay D2 ≥ 2 => D ≥ √2 . Dấu "=" xảy ra <=> x = 2 hoặc x = 4 (tm)
*GTLN
Áp dụng bất đẳng thức AM-GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\le4\)
hay D2 ≤ 4 => D ≤ 2 . Dấu "=" xảy ra <=> x = 3 (tm)
Vậy \(\hept{\begin{cases}Min_D=\sqrt{2}\Leftrightarrow x=2orx=4\\Max_D=2\Leftrightarrow x=3\end{cases}}\)