Cho a,b,c>0 chứng minh rằng: \(\frac{4}{2a+b+c}+\frac{4}{2b+c+a}+\frac{4}{2c+b+a}\ge\frac{9}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\), ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+1+b+1+c+1}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}\)
\(=\frac{3^2}{2\left(a+b+c\right)}=\frac{9}{2.4,5}=\frac{9}{9}=1\)
dấu "=" xảy ra khi \(\frac{1}{a+b}=\frac{1}{b+c}=\frac{1}{c+a}=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
hmm thật ra bạn ghi nhầm đề đúng hog , mk sửa lại nhá:(
Cho hàm số \(y=f\left(x\right)=\frac{1}{2}x+5\)
Tính f(0); f(1); f(2); f(3); f(-2); f(-10)
\(f\left(0\right)=\frac{1}{2}.0+5=5\)
\(f\left(2\right)=\frac{1}{2}.2+5=6\)
\(f\left(3\right)=\frac{1}{2}.3+5=6,5\)
\(f\left(-2\right)=\frac{1}{2}.\left(-2\right)+5=4\)
\(f\left(-10\right)=\frac{1}{2}.\left(-10\right)+5=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b,\sqrt{x-1}+\sqrt{4x-4}+\frac{1}{5}\sqrt{25x-25}=24\)
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}+\frac{1}{5}\sqrt{25\left(x-1\right)}=24\)
\(\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=24\)
\(\sqrt{x-1}\left(1+2+1\right)=24\)
\(4\sqrt{x-1}=24\)
\(\sqrt{x-1}=6\)
\(x-1=36\)
\(x=37\left(TM\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)