Giải hệ phương trình: \(\hept{\begin{cases}3x+\sqrt{y+6}=11\\5x-\sqrt{y+6}=13\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, Phương trình hoành độ giao điểm của \(\left(P\right)\)và \(\left(d\right)\)là:
\(-x^2=mx-1\)
\(\Leftrightarrow x^2+mx-1=0\)(1)
Phương trình có hệ số \(a.c=1.\left(-1\right)=-1< 0\)nên luôn có hai nghiệm phân biệt.
Do đó \(\left(P\right)\)luôn cắt \(\left(d\right)\)tại hai điểm phân biệt \(A,B\).
2, Phương trình (1) luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=-1\end{cases}}\)
\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-m^3-3.\left(-1\right).\left(-m\right)\)
\(=-m^3-3m=-4\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m-1=0\)(vì \(m^2+m+4=m^2+m+\frac{1}{4}+\frac{15}{4}=\left(m+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
\(\Leftrightarrow m=1\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(=12^2+16^2=400\)
\(\Leftrightarrow BC=20\left(cm\right)\)
\(AB^2=BD.BC\Leftrightarrow BD=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\left(cm\right)\)
Xét tam giác \(ABC\)phân giác \(AD\):
\(\frac{AB}{BD}=\frac{AC}{CD}\)(tính chất đường phân giác)
\(=\frac{AB+AC}{BD+CD}=\frac{12+16}{20}=1,4\)
\(\Leftrightarrow BD=\frac{AB}{1,4}=\frac{12}{1,4}=\frac{60}{7}\left(cm\right)\)
\(HD=\left|BD-BH\right|=\frac{48}{35}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2+2\sqrt{28n^2+1}\)là số tự nhiên mà \(n\)là số tự nhiên nên \(\sqrt{28n^2+1}\)là số tự nhiên.
Suy ra \(28n^2+1=k^2\)(với \(k\inℕ\))
\(\Leftrightarrow k^2-1=28n^2\)
Suy ra \(k\)lẻ nên \(k=2m+1\).
\(\left(2m+1\right)^2-1=28n^2\)
\(\Leftrightarrow m^2+m=7n^2\)
\(\Rightarrow\orbr{\begin{cases}m⋮7\\m+1⋮7\end{cases}}\)
- \(m=7p\)
\(p\left(7p+1\right)=n^2\)
mà \(\left(p,7p+1\right)=1\)nên \(\hept{\begin{cases}p=a^2\\7p+1=b^2\end{cases}}\)
\(A=2+2\sqrt{28n^2+1}=2+2k=2+4m+2=4+28p\)
\(=4\left(1+7p\right)=4b^2\)là một số chính phương.
- \(m+1=7p\)
\(p\left(7p-1\right)=n^2\)
mà \(\left(p,7p-1\right)=1\)nên \(\hept{\begin{cases}p=a^2\\7p-1=b^2\end{cases}}\)
\(b^2+1=7p\Rightarrow b^2\equiv6\left(mod7\right)\)
Không có giá trị nào thỏa mãn.
Do đó ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A=2+2\sqrt{28n^2+1}\) là số chính phương
\(\Leftrightarrow2+2\sqrt{28n^2+1}⋮2\)
\(\Rightarrow2+2\sqrt{28n^2+1}=4\)
\(\Rightarrow\sqrt{28n^2+1}=1\)
\(\Rightarrow28n^2+1=1^2\)
\(\Rightarrow28n^2=0\Rightarrow n=0\)
Vậy A là SCP với n=0
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ: \(x\ge0\); \(1-4x\ne\)0; \(2\sqrt{x}-1\ne0\); \(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\ne\)0
<=> \(x\ge0\); x \(\ne\)1/4
Ta có: \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(A=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x+2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}\right)\)
\(A=\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{6x+4x+2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\)
b)Với x \(\ge\)0 và x \(\ne\)1/4
Ta có: A > A2 <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\left(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)^2\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\left(1-\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)>0\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10x+2\sqrt{x}-\sqrt{x}+1}{10x+2\sqrt{x}}>0\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10+\sqrt{x}+1}{10x+2\sqrt{x}}>0\)
<=> \(\sqrt{x}-1>0\) <=> \(x>1\)
c) Với x\(\ge\)0 và x \(\ne\)1/4 (1)
Ta có: \(\left|A\right|>\frac{1}{4}\) <=> \(\orbr{\begin{cases}A>\frac{1}{4}\\A< -\frac{1}{4}\end{cases}}\)
TH1: \(A>\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\frac{1}{4}\)
<=> \(4\left(\sqrt{x}-1\right)>10x+2\sqrt{x}\)
<=> \(4\sqrt{x}-4>10x+2\sqrt{x}\)
<=> \(10x-2\sqrt{x}+4< 0\)(vô liia vì \(10x-2\sqrt{x}+4>0\))
TH2: \(A< -\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}< -\frac{1}{4}\)
<=> \(4\left(\sqrt{x}-1\right)< -10x-2\sqrt{x}\)
<=> \(4\sqrt{x}-4+10x+2\sqrt{x}< 0\)
<=> \(10x+6\sqrt{x}-4< 0\)
<=> \(5x+3\sqrt{x}-2< 0\)
<=> \(\left(5\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)
<=> \(x< \frac{4}{25}\) (2)
Từ (1) và (2) => \(0\le x< \frac{4}{25}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\sqrt{x}+3}{\sqrt{x}+1}-\frac{5}{1-\sqrt{x}}+\frac{4}{x-1}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+6\sqrt{x}+\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tứ giác \(AKHI\)có: \(\widehat{KAI}=\widehat{AKH}=\widehat{HIA}=90^o\)
nên tứ giác \(AKHI\)có ba góc vuông nên \(AKHI\)là hình chữ nhật.
b) \(\Delta AKH=\Delta KAI\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHK}=\widehat{KIA}\)(hai góc tương ứng)
mà \(\widehat{AHK}=\widehat{ACB}\)(vì cùng phụ với \(\widehat{HAC}\))
nên \(\widehat{KIA}=\widehat{ACB}\)
Xét tam giác \(AIK\)và tam giác \(ACB\)có:
\(\widehat{IAK}=\widehat{CAB}\)(góc chung)
\(\widehat{KIA}=\widehat{BCA}\)(cmt)
\(\Rightarrow\Delta AIK~\Delta ACB\left(g.g\right)\)
\(\Rightarrow\frac{AI}{AC}=\frac{AK}{AB}\)(hai cặp cạnh tương ứng)
\(\Rightarrow AI.AB=AK.AC\).
c) \(AI.AB=AK.AC\Leftrightarrow\frac{AB}{AC}=\frac{AK}{AI}\)
Xét tam giác \(ABK\)và tam giác \(ACI\):
\(\widehat{A}\)chung
\(\frac{AB}{AC}=\frac{AK}{AI}\)(cmt)
\(\Rightarrow\Delta ABK~\Delta ACI\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABK}=\widehat{ACI}\)(hai góc tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK : x ≥ -1/2
\(\Leftrightarrow\sqrt{2x+1}-\frac{3}{2}\sqrt{4\left(2x+1\right)}+\sqrt{25\left(2x+1\right)}=0\)
\(\Leftrightarrow\sqrt{2x+1}-3\sqrt{2x+1}+5\sqrt{2x+1}=0\)
\(\Leftrightarrow3\sqrt{2x+1}=0\Leftrightarrow x=-\frac{1}{2}\left(tm\right)\)
\(\hept{\begin{cases}3x+\sqrt{y+6}=11\\5x-\sqrt{y+6}=13\end{cases}}\hept{\begin{cases}8x=11+13\\5x-\sqrt{y+6}=13\end{cases}}\)
\(\hept{\begin{cases}8x=24\\5x-\sqrt{y+6}=13\end{cases}}\hept{\begin{cases}x=3\left(1\right)\\5x-\sqrt{y+6}=13\left(2\right)\end{cases}}\)
thế (1) vào (2)
\(\hept{\begin{cases}x=3\\5.3-\sqrt{y+6}=13\end{cases}\hept{\begin{cases}x=3\\\sqrt{y+6}=2\end{cases}\hept{\begin{cases}x=3\\y+6=4\end{cases}}}}\)
\(\hept{\begin{cases}x=3\\x=-2\end{cases}}\)
ĐK : y ≥ -6
\(\hept{\begin{cases}3x+\sqrt{y+6}=11\\5x-\sqrt{y+6}=13\end{cases}}\Leftrightarrow\hept{\begin{cases}8x=24\\3x+\sqrt{y+6}=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\\sqrt{y+6}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\left(tm\right)}\)
Vậy hpt có nghiệm ( x; y ) = ( 3 ; -2 )