Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(x-y-3\left(\sqrt{x}-\sqrt{y}\right)\)
\(\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2-3\left(\sqrt{x}-\sqrt{y}\right)\)
\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-3\left(\sqrt{x}-\sqrt{y}\right)\)
\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}-3\right)\)
\(x-y-3\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-3\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}-3\right)\)

Đk: x \(\ge\)-2
Ta có: \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
<=> \(2\left[x^2-2x+4-\left(x+2\right)\right]=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt{x^2-2x+4}=a\)(a > 0) ; \(\sqrt{x+2}=b\)(b \(\ge\)0)
Do đó: \(2\left(a^2-b^2\right)=3ab\)
<=> \(2a^2-2b^2-3ab=0\)
<=> \(2a^2-4ab+ab-2b^2=0\)
<=> \(2a\left(a-2b\right)+b\left(a-2b\right)=0\)
<=> \(\left(2a+b\right)\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a+b=0\\a-2b=0\end{cases}}\)(a + 2b = 0 (loại) vì a > 0 và b > = 0)
<=> a = 2b
<=> \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\)
<=> \(x^2-2x+4=4x+8\)
<=> \(x^2-6x-4=0\)
\(\Delta'=\left(-3\right)^2+4=13>0\)
=> pt có 2 nghiệm pb
\(x_1=3+\sqrt{13}\);(tm) \(x_2=3-\sqrt{13}\)(tm)
ĐK: \(x\ge-2\).
\(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Leftrightarrow2\left(x^2-3x+2\right)-2\left(3x+6\right)=3\sqrt{x^3+8}-3\left(2x+4\right)\)
\(\Leftrightarrow2\left(x^2-6x-4\right)=3\frac{x^3+8-\left(2x+4\right)^2}{\sqrt{x^3+8}+2x+4}\)
\(\Leftrightarrow2\left(x^2-6x-4\right)=3\frac{x^3-4x^2-16x-8}{\sqrt{x^3+8}+2x+4}\)
\(\Leftrightarrow2\left(x^2-6x-4\right)-3\frac{\left(x+2\right)\left(x^2-6x-4\right)}{\sqrt{x^3+8}+2x+4}=0\)
\(\Leftrightarrow\left(x^2-6x-4\right)\left[2-\frac{3\left(x+2\right)}{\sqrt{x^3+8}+2x+4}\right]=0\)
\(\Leftrightarrow x^2-6x-4=0\)
\(\Leftrightarrow x=3\pm\sqrt{13}\)(thỏa mãn)

\(x-y-3\left(\sqrt{x}-\sqrt{y}\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-3\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}-3\right)\)


ĐKXĐ:\(\hept{\begin{cases}a\ge0\\a\ne4;a\ne16\end{cases}}\)
Ta có : \(\frac{1}{\sqrt{a}-4}-\frac{1}{a-4\sqrt{a}+4}\)
\(=\frac{a-4\sqrt{a}+4-\sqrt{a}+4}{\left(\sqrt{a}-4\right)\left(a-4\sqrt{a}+4\right)}\)
\(=\frac{a-5\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(a-4\sqrt{a}+4\right)}\)//Cảm giác như đề sai ấy nhỉ ??

\(h,\sqrt{14+4\sqrt{6}}\)
\(\frac{\sqrt{28+8\sqrt{6}}}{\sqrt{2}}\)
\(\frac{\sqrt{\left(2\sqrt{6}\right)^2+8\sqrt{6}+2^2}}{\sqrt{2}}\)
\(\frac{\sqrt{\left(2\sqrt{6}+2\right)^2}}{\sqrt{2}}\)
\(\frac{2\sqrt{6}+2}{\sqrt{2}}=2\sqrt{3}+\sqrt{2}\)
