Giải PT:
\(\sqrt{-2x}-\sqrt{2-x}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài tập hình thiếu câu hỏi nhé, hay bạn chỉ hỏi mỗi đại thôi ?
a, \(A=2x^2+1\ge1\forall x\)
Dấu ''='' xảy ra khi x = 0
Vậy GTNN A bằng 1 tại x = 0
b, \(B=x^2-3x+2=x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)
Dấu ''='' xảy ra khi x = 3/2
Vậy GTNN B bằng -1/4 tại x = 3/2
c, ĐK : x >= 0
\(C=2x-\sqrt{x}=2\left(x-\frac{1}{2}\sqrt{x}\right)=2\left(x-2.\frac{1}{4}\sqrt{x}+\frac{1}{16}-\frac{1}{16}\right)\)
\(=2\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\forall x\)
Dấu ''='' xảy ra khi x = 1/16
Vậy GTNN C bằng -1/8 tại 1/16
d, \(D=3\sqrt{x}-x=-\left(x-3\sqrt{x}\right)=-\left(x-2.\frac{3}{2}\sqrt{x}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
Dấu ''='' xảy ra khi x = 9/4
Vậy GTLN D bằng 9/4 tại x = 9/4
\(A=\left(\frac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right):\left(x-1\right)-\frac{2}{\sqrt{x}-1}\)ĐK : \(x\ge0;x\ne1\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}+\sqrt{x}\right):\left(x-1\right)-\frac{2}{\sqrt{x}-1}\)
\(=\left(x+2\sqrt{x}+1\right):\left(x-1\right)-\frac{2}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{2}{\sqrt{x}-1}=1\)
\(a,\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
\(2\sqrt{x-5}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)
\(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
\(\sqrt{x-5}=\sqrt{1-x}\)
\(ĐKXĐ:x\ge5;x\le1\)
vậy pt vô nghiệm
\(b,ĐKXĐ:x\ge2\)
\(b,\sqrt{50x-25}+\sqrt{8x-4}-3\sqrt{x}=\sqrt{72x}\)
\(5\sqrt{2x-1}+2\sqrt{2x-1}-3\sqrt{x}=6\sqrt{2x}\)
\(7\sqrt{2x+1}=6\sqrt{2x}+3\sqrt{x}\)
\(49\left(2x+1\right)=72x+9x+36\sqrt{2}x\)
\(98x+49=81x+36\sqrt{2}x\)
\(17x+49=36\sqrt{2}x\)
\(x\left(17+36\sqrt{2}\right)=-49\)
\(x=\frac{-49}{17+36\sqrt{2}}\left(KTM\right)\)
vậy pt vô nghiệm
\(c,ĐKXĐ:x\ge3\)
\(c,\sqrt{x^2-9}-\sqrt{4x-12}=0\)
\(\sqrt{x-3}\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
\(\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{cases}}\orbr{\begin{cases}x=3\left(TM\right)\\x=1\left(KTM\right)\end{cases}}\)
\(d,ĐKXĐ:x\ge-1\)
\(\sqrt{9x+9}-2\sqrt{\frac{x+1}{4}}=4\)
\(3\sqrt{x+1}-2\frac{\sqrt{x+1}}{2}=4\)
\(2\sqrt{x+1}=4\)
\(x+1=4\)
\(x=3\left(TM\right)\)
\(K=x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\ge\left(0+1\right)^2=1\)
Dấu ''='' xảy ra khi \(\sqrt{x-1}=0\Leftrightarrow x=1\)
Vậy GTNN K bằng 1 tại x = 1
Áp dụng BĐT Cauchy Schwarz dạng Engel
\(A\ge\frac{\left(1+1+1\right)^2}{a^2+ab+b^2+bc+ca+c^2}\)
Theo BĐT : \(a^2+b^2+c^2\ge ab+ac+bc\)
\(2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* đúng *
\(=\frac{\left(1+1+1\right)^2}{2\left(ab+ac+bc\right)}=\frac{9}{2.3}=\frac{3}{2}\)
Dấu ''='' xảy ra khi a = b = c = 1
ta có \(xy\le\frac{x^2+y^2}{2}\Rightarrow\frac{x^2}{x^2+xy+y^2}\ge\frac{2}{3}.\frac{x^2}{x^2+y^2}\)
Vậy \(A\ge\frac{2}{3}\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{y^2+z^2}+\frac{z^2}{z^2+x^2}\right)=\frac{2}{3}\left(\frac{x^2+y^2+z^2}{x^2+y^2}-1+\frac{x^2+y^2+z^2}{y^2+z^2}-1+\frac{x^2+y^2+z^2}{x^2+z^2}-1\right)\)
hay \(A\ge\frac{2\left(x^2+y^2+z^2\right)}{3}\left(\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}\right)-2\)
\(\Rightarrow A\ge\frac{2}{3}\left(x^2+y^2+z^2\right).\frac{9}{2\left(x^2+y^2+z^2\right)}-2=3-2=1\)
Vậy ta có đpcm
ta có :
\(B=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{1}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
ta có
\(S\ge\frac{1}{\frac{1+1998}{2}}+\frac{1}{\frac{2+1997}{2}}+..+\frac{1}{\frac{k+1998-k+1}{2}}+..+\frac{1}{\frac{1999}{2}}\)
hay \(S\ge\frac{2}{1999}+\frac{2}{1999}+..+\frac{2}{1999}=2.\frac{1998}{1999}\)
do dấu = không xảy ra nên \(S>2.\frac{1998}{1999}\)
\(ĐKXĐ:x\le0\)
\(\sqrt{-2x}-\sqrt{2-x}=0\)
\(\sqrt{-2x}=\sqrt{2-x}\)
\(\left|-2x\right|=\left|2-x\right|\)
\(-2x=2-x\)
\(-x=2\)
\(x=-2\left(TM\right)\)