a) rút gọn B
b)cho P=\(\frac{B}{A}\)Tìm x để P<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+...+\frac{1}{\sqrt{n^2+n}}\)
\(< \frac{1}{\sqrt{n^2}}+\frac{1}{\sqrt{n^2}}+...+\frac{1}{\sqrt{n^2}}\)(\(n\)số hạng)
\(=\frac{n}{\sqrt{n^2}}=1\)
Ta có đpcm.
a/
\(S_{ABC}=S_{ABD}+S_{BCD}\)
\(\Rightarrow AB.BC.\sin\widehat{ABC}=AB.BD.\sin\widehat{ABD}+BC.BD.\sin\widehat{CBD}\)
\(\Rightarrow6.12.\sin120^o=6.BD.\sin60^o+12.BD.\sin60^o=18.BD.\sin60^o\)
\(\Rightarrow BD=\frac{72.\sin120^o}{18.\sin60^o}=\frac{4.2.\sin60^o.\cos60^o}{\sin60^o}=8.\cos60^o=4cm\)
b/
Ta có \(BM=CM=\frac{BC}{2}=\frac{12}{2}=6cm=AB\)
=>Ta, giác ABM cân tại B mà BD là phân giác của \(\widehat{B}\Rightarrow BD\perp AM\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
c/ Theo tính chất đường phân giác trong tam giác
Ta có \(\frac{AD}{AB}=\frac{CD}{BC}\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}=\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow AD=\frac{AC}{3}\)
Gọi E là giao của BD và AM
Xét tg vuông ABE có \(\widehat{BAE}=90^o-\widehat{ABD}=90^o-60^o=30^o\Rightarrow BE=\frac{AB}{2}=\frac{6}{2}=3cm\)
\(\Rightarrow DE=BD-BE=4-3=1cm\)
Ta có \(AE^2=AB^2-BE^2=6^2-3^2=27\)
Xét tg vuông ADE có
\(AD=\sqrt{AE^2+DE^2}=\sqrt{28}=2\sqrt{7}cm\)
Mà \(AD=\frac{AC}{3}\Rightarrow AC=3AD=3.2\sqrt{7}=6\sqrt{7}cm\)
x, y > 0
\(=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\cdot\frac{\sqrt{xy}\left(x+y\right)}{\left(\sqrt{x^3}+\sqrt{y^3}\right)+\left(x\sqrt{y}+y\sqrt{x}\right)}\)
\(=\frac{2\sqrt{xy}+x+y}{xy}\cdot\frac{\sqrt{xy}\left(x+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{xy}}\cdot\frac{\left(x+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
Ta có : \(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{16}}=\frac{\sqrt{x}+\sqrt{y}}{4}=\frac{\sqrt{x}}{4}+\frac{\sqrt{y}}{4}\ge2\sqrt{\frac{\sqrt{xy}}{4\cdot4}}=2\sqrt{\frac{\sqrt{16}}{16}}=1\)( AM-GM )
Dấu "=" xảy ra <=> x = y = 4 . Vậy MinA = 1
a, \(A=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\left(\sqrt{x-1}\right)}\right)\)
\(=\frac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}=\frac{\left(\sqrt{x}\right)^3-1}{\left(\sqrt{x}-1\right)^2}\)
b, \(A=7\Leftrightarrow\left(\sqrt{x}\right)^3-1=7\left(\sqrt{x}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}^3-7x+14\sqrt{x}-8=0\)
\(\Leftrightarrow\left(\sqrt{x}^3-4x\right)-\left(3x-12\sqrt{x}\right)+\left(2\sqrt{x}-8\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(x-3\sqrt{x}+2\right)=0\)
=> Tìm x
d, \(A< 1\Leftrightarrow\left(\sqrt{x}\right)^3-1< \left(\sqrt{x}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}^3-1-\left(\sqrt{x}-1\right)^2< 0\)
\(\Leftrightarrow\sqrt{x}^3-x+2\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}.\left(x-\sqrt{x}+2\right)< 0\)
Mà \(x-\sqrt{x}+2=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\sqrt{x}< 0\)vô lí
=> Không tìm được x
\(P=\frac{\sqrt{x}-\left(1-\sqrt{x}\right)}{\sqrt{x}.\left(1-\sqrt{x}\right)}:\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{\sqrt{x}.\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}-x}:\left[\left(2x+\sqrt{x}-1\right).\left(\frac{1}{1-x}+\frac{\sqrt{x}}{1+x\sqrt{x}}\right)\right]\)
Xét \(\frac{1}{1-x}+\frac{\sqrt{x}}{1+x\sqrt{x}}=\frac{\left(x\sqrt{x}+1\right)+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}=\frac{1+\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\)
\(\Rightarrow P=\frac{2\sqrt{x}-1}{\sqrt{x}-x}:\frac{\left(2x+\sqrt{x}-1\right).\left(1+\sqrt{x}\right)}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}.\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(1+x\sqrt{x}\right)}{\left(2x+\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(1+x\sqrt{x}\right)}{\sqrt{x}.\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{1+x\sqrt{x}}{x-\sqrt{x}}\)
b, Đặt \(\sqrt{x}=a,\left(a\ge0\right)\)\(\Rightarrow P=\frac{1+a^3}{a^2-a}\), để chứng minh P > 1
thì ta chứng minh \(1+a^3>a^2-a\)
\(\Leftrightarrow a^3-a^2+a+1>0\Leftrightarrow\left(a-1\right)^3+2\left(a^2-a+1\right)>0\)
mà \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall a\)
\(\Rightarrow2\left(a^2-a+1\right)\ge\frac{3}{2},a\ge0\)nên \(\left(a-1\right)^3\ge1\Rightarrow a^3-a^2+a+1\ge\frac{1}{2}\)hay \(P>1\)
a)
\(B=\frac{x+3}{x-9}+\frac{2}{\sqrt{x}-3}-\frac{1}{3-\sqrt{x}}\)
\(\Leftrightarrow\frac{x+3}{x-9}+\frac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\frac{x+3+2\sqrt{x}+6+\sqrt{x}+3}{x-9}\)
\(\Leftrightarrow\frac{3\sqrt{x}+x+14}{x-9}\)
cái ngôn ngữ j zậy ta ? =_=