Giải phương trình
\(\left(x^2+2x+1\right)^2+2\left(x^2+2x+1\right)+1=x\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\le2\)
\(x^2=\sqrt{2-x}+2\)
\(x^2-2=\sqrt{2-x}\)
\(x^4-4x^2+4=2-x\)
\(x^4-4x^2+x+2=0\)
\(x^4+x^3-3x^2-2x-1x^3-x^2+3x+2=0\)
\(x\left(x^3+x^2-3x-2\right)-\left(x^3+x^2-3x-2\right)=0\)
\(\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)
\(\left(x-1\right)\left(x^3+2x^2-x^2-2x-x-2\right)=0\)
\(\left(x-1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)
\(TH1:x-1=0< =>x=1\left(KTM\right)\)
mình cũng chưa biết tại sao nó lại không thỏa mãn nữa :v
\(TH2:x+2=0< =>x=-2\left(TM\right)\)
xét \(x^2-x-1=0\)
\(\sqrt{\Delta}=\sqrt{\left(-1\right)^2-4.1.\left(-1\right)}=\sqrt{5}\)
\(\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\left(TM\right)\\x_2=\frac{1-\sqrt{5}}{2}\left(KTM\right)\end{cases}}\)
vậy kl...................
dốt quá bạn thêm đkxđ vào lúc bình cả hai vế lên nha
\(\orbr{\begin{cases}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1\left(KTM\right)\\x=\frac{1-\sqrt{5}}{2}\left(KTM\right)\end{cases}}\)
\(\sqrt{5}\cdot\sqrt{45}=\sqrt{5\cdot45}=\sqrt{225}=15\)
\(\sqrt{75\cdot48}=\sqrt{75}\cdot\sqrt{48}=5\sqrt{3}\cdot4\sqrt{3}=20\cdot3=60\)
\(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{324}=18\)
\(\sqrt{0,25\cdot196}=\sqrt{0,25}\cdot\sqrt{196}=0,5\cdot14=7\)
\(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}=\sqrt{9\cdot25}=\sqrt{9}\cdot\sqrt{25}=3\cdot5=15\)
\(\sqrt{6,8^2-3,2^2}=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}=\sqrt{3,6\cdot10}=\sqrt{36}=6\)
\(\sqrt{36a^2}=\left|6a\right|=-6a\left(a< 0\right)\)
\(\sqrt{a^4b^6c^2}=\left|a^2b^3c\right|=a^2\left|b^3c\right|\)
\(\sqrt{4\left(a-3\right)^2}=2\left|a-3\right|=2a-6\left(a\ge3\right)\)
\(\sqrt{9\left(b-2\right)^2}=3\left|b-2\right|=6-3b\left(b< 2\right)\)
\(\sqrt{b^2\left(b-1\right)^2}=\left|b\left(b-1\right)\right|=b^2-b\left(b< 0\right)\)
ĐK : x ≥ -3/2
\(\Leftrightarrow x^2+4x+3-\left(2\sqrt{2x+3}-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8x+12-4}{2\left(\sqrt{2x+3}+1\right)}=0\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+3\right)-\frac{4}{\sqrt{2x+3}+1}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+3\right)-\frac{4}{\sqrt{2x+3}+1}=0\end{cases}}\)
TH1 : x + 1 = 0 <=> x = -1 (tm) (1)
TH2 : \(\left(x+3\right)-\frac{4}{\sqrt{2x+3}+1}=0\Leftrightarrow\left(x+3\right)\sqrt{2x+3}+x+3=4\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{2x+3}-1\right)+2x+2=0\)
\(\Leftrightarrow\left(x+3\right)\frac{2x+2}{\sqrt{2x+3}+1}+2x+2=0\)
\(\Leftrightarrow2\left(x+1\right)\left[\frac{x+3}{\sqrt{2x+3}+1}+1\right]=0\)(*)
Dễ thấy với x ≥ -3/2 thì \(\frac{x+3}{\sqrt{2x+3}+1}+1>0\)
nên (*) <=> x + 1 = 0 <=> x = -1 (tm) (2)
Từ (1) và (2) => pt có nghiệm x = -1
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3\sqrt{3}}{\sqrt{2}}+\frac{2\sqrt{2}}{\sqrt{3}}-\frac{4\sqrt{3}}{\sqrt{2}}\)
\(=\frac{9+4-12}{\sqrt{6}}=\frac{1}{\sqrt{6}}\)
\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)
gọi 3 số đó là a,b,c
a+b+c=100
theo bdt cosi: a+b+c>=\(3\sqrt[3]{abc}\)
\(\Leftrightarrow100\ge3\sqrt[3]{abc}\Leftrightarrow\frac{1000000}{27}\ge abc\)
vậy abc đạt gtln là 1000000/27 hay tích 3 số đó có GTLN là 1000000/27
giải hệ pt \(\hept{\begin{cases}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{cases}}\)
Giải
\(\hept{\begin{cases}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{cases}}\)
\(\hept{\begin{cases}x^5+y^5=1\\x^4.x^5+y^4.y^5=x^4+y^4\end{cases}}\)
\(\hept{\begin{cases}x^5+y^5=1\\x^4.x^5+y^4.y^5-x^4-y^4=0\end{cases}}\)
\(\hept{\begin{cases}x^5=1-y^5\\x^4.\left(x^5-1\right)+y^4.\left(y^5-1\right)=0\end{cases}}\)
\(\hept{\begin{cases}x^5=1-y^5\\x^4.\left(1-y^5-1\right)+y^4.\left(y^5-1\right)=0\end{cases}}\)
\(\hept{\begin{cases}x^5=1-y^5\\x^4.\left(-y^5\right)+y^4.\left(-x^5\right)=0\end{cases}}\)
\(\hept{\begin{cases}x^5=1-y^5\\-x^4.y^5-y^4.x^5=0\end{cases}}\)
\(\hept{\begin{cases}x^5=1-y^5\\x^4.y^4\left(-y-x\right)=0\end{cases}}\)
...
\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)
\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)
\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)
\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)
\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)
\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)
\(=[(x-z)[y(x+z+y)+zx]]\)
\(=-(x-z)(yx+yz+y2+zx)\)
\(=-(x-z)(yx+zx+yz+y2)\)
\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)
\(=-(x-z)(y+z)(x+y).\)
yz( y + z ) + xz ( z – x ) – xy ( x + y )
=(y+x)(z-x)(z+y)
nha bạn
\(\hept{\begin{cases}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{cases}}\)
\(\Rightarrow x^9+y^9=\left(x^4+y^4\right)\left(x^5+y^5\right)=x^9+y^9+x^4y^5+x^5y^4\)
\(\Leftrightarrow x^4y^4\left(x+y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0;y=0\\x+y=0\end{cases}}\)
Với \(x=0\Rightarrow y=1,y=0\Rightarrow x=1\).
Với \(x+y=0\Leftrightarrow x=-y\Leftrightarrow x^5=-y^5\Leftrightarrow x^5+y^5=0\)(mâu thuẫn với \(x^5+y^5=1\))
Vậy hệ có nghiệm là \(\left(0,1\right),\left(1,0\right)\).
\(\left(x^2+2x+1\right)^2+2\left(x^2+2x+1\right)+1=x\)
\(\Leftrightarrow\left(x^2+2x+2\right)^2=x\Leftrightarrow\left|x^2+2x+2\right|=\sqrt{x}\)
Với : x >= 0 => \(x^2+2x+2>0\)
\(\Leftrightarrow x^2+2x+2=\sqrt{x}\Leftrightarrow x^2+2x+2-\sqrt{x}=0\)
\(\Delta=4-4\left(2-\sqrt{x}\right)=4-8+4\sqrt{x}=-4+4\sqrt{x}\)
Để pt có nghiệm khi delta >=0
\(-4+4\sqrt{x}\ge0\Leftrightarrow1-\sqrt{x}\le0\Leftrightarrow0\le x\le1\)