hai vòi nước chảy vào một bể mất \(4\frac{4}{5}\) giờ mới đầy bể. nếu chảy riêng thì sau 1 giờ thì lượng nx vòi thứ nhất chảy bằng \(\frac{2}{3}\) lượng nx vòi thứ 2 chảy. hỏi nếu chảy riêng thì mỗi vòi phải chảy trong bao lâu mới đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


mik chỉ bít giải phương trình bậc nhất à
\(\hept{\begin{cases}2x^2+3y^2=36\\3x^2+7y^2=37\end{cases}\hept{\begin{cases}6x^2+9y^2=108\\6x^2+14y^2=74\end{cases}}}\)
\(5y^2=-34\left(KTM\right)\)
vậy hpt vô nghiệm

Nửa chu vi hình chữ nhật : 42 : 2 = 21(m)
Gọi x(m) là chiều dài hình chữ nhật ( 10 < x < 21 )
=> Chiều rộng hình chữ nhật = 21 - x (m)
Theo đlí Pythagoras ta có : x2 + ( 21 - x )2 = 152
<=> x2 + x2 - 42x + 441 - 225 = 0
<=> 2x2 - 42x + 216 = 0
<=> x2 - 21x + 108 = 0 <=> ( x - 12 )( x - 9 ) = 0
<=> x = 12 (tm) hoặc x = 9 (ktm)
=> Chiều dài = 12m ; chiều rộng 9m

\(\left(\frac{1}{\sqrt{3}-2}-\frac{1}{\sqrt{3}+2}\right).\frac{2-\sqrt{2}}{1-\sqrt{2}}\)
\(=\left(\frac{\sqrt{3}+2-\sqrt{3}+2}{-1}\right).\frac{-\sqrt{2}\left(1-\sqrt{2}\right)}{-1}\)
\(=-4\sqrt{2}\left(1-\sqrt{2}\right)=-4\sqrt{2}+8\)
\(\left(\frac{1}{\sqrt{3}-2}-\frac{1}{\sqrt{3}+2}\right).\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}\)
\(\left(\frac{\sqrt{3}+2-\sqrt{3}+2}{3-2}\right).-\left(\sqrt{2}\right)\)
\(=4.-\left(\sqrt{2}\right)\)
\(=-4\sqrt{2}\)

a, Gọi hình chữ nhật đó là A;B;C;D với AB ; DC là hình dài AD ; BC là chiều rộng => BD là đường chéo
hình chữ nhật có chu vi bằng 42 khi đo : \(\left(AB+AD\right).2=42\Leftrightarrow AB+AD=21\)(1)
Theo định lí Pytago tam giác ABD vuông tại A
\(BD^2=AD^2+AB^2=225\)(2)
\(\left(1\right)\Rightarrow AB=21-AD\)
Thay vào (2) ta được : \(AD^2+\left(21-AD\right)^2=225\Rightarrow AD=12;9\)cm
Với AD = 12 cm thì \(AB=21-12=9\)cm
Với AD = 9 cm thì \(AB=21-9=12\)cm
mà chiều dài > chiều rộng hay AB = 12 cm ; AD = 9 cm
Vậy chiều dài bằng 12 cm ; chiều rộng bằng 9 cm

Bài 2 :
a, \(\sqrt{x^2-4x+4}=5\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
TH1 : \(x-2=5\Leftrightarrow x=7\)
TH2 : \(x-2=-5\Leftrightarrow x=-3\)
b, \(\sqrt{x+2}+\sqrt{9x+18}=\sqrt{4x+8}+6\)ĐK : x >= -2
\(\Leftrightarrow\sqrt{x+2}+3\sqrt{x+2}=2\sqrt{x+2}+6\)
\(\Leftrightarrow2\sqrt{x+2}=6\Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\)

bạn chỉnh lại cái hình nhé, AB > AC mà
a, Vì M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình tam giác ABC
=> MN // AC và MN = 1/2 AC = AP (1)
Vì P là trung điểm AC
N là trng điểm BC
=> PN là đường trung bình tam giác ABC
=> PN // AB = 1/2 AB = AM (2)
mà ^BAC = 900 (3)
Từ (1) ; (2) ; (3) suy ra : tứ giác AMNP là hình chữ nhật
b, Hạ đường cao AH vuông góc với BC tại H, \(H\in BC\)
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=6\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=\frac{24}{5}\)cm
c, Vì M là trung điểm AB => AM = 1/2 AB = 8/2 = 4 cm
Vì P là trung điểm AC => AP = 1/2 AC = 6/2 = 3 cm
\(\Rightarrow S_{AMP}=\frac{1}{2}AM.AP=\frac{1}{2}.4.3=6\)cm2
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\)cm2
Lại có : \(S_{ABC}=S_{AMP}+S_{BMPC}\Rightarrow S_{BMPC}=S_{ABC}-S_{AMP}=24-6=18\)cm2


Đổi: \(4\frac{4}{5}h=4,8h\).
Gọi thời gian nếu chảy riêng vòi thứ hai chảy đầy bể là \(x\left(h\right),x>0\).
Thời gian nếu chảy riêng vòi thứ nhất chảy đầy bể là \(\frac{2}{3}x\left(h\right)\).
Mỗi giờ vòi thứ nhất chảy được số phần bể là: \(\frac{3}{2x}\)(bể) vòi thứ hai chảy được số phần bể là: \(\frac{1}{x}\)(bể).
Mỗi giờ cả hai vòi chảy được: \(\frac{1}{4,8}\)(bể)
Ta có phương trình:
\(\frac{3}{2x}+\frac{1}{x}=\frac{1}{4,8}\)
\(\Leftrightarrow x=12\)(thỏa mãn)
Vậy nếu chảy riêng vòi thứ hai chảy đầy bể sau \(12h\)vòi thứ nhất chảy đầy bể sau \(\frac{2}{3}.12=8h\).