Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1:\dfrac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\dfrac{1}{49}\\ =7^2\left(2^6:2^5\right)\cdot\dfrac{1}{7^2}\\=\left(7^2\cdot\dfrac{1}{7^2}\right)\cdot2^{6-5}\\ =1\cdot2^1\\ =2\)
\(\left(1:\dfrac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\dfrac{1}{49}\)
\(=\dfrac{7^2}{49}\cdot\left(2^6:2^5\right)\)
\(=\dfrac{49}{49}\cdot2=2\)
Số hữu tỉ là \(\dfrac{5}{4};3\dfrac{2}{5};\dfrac{-2}{7};\dfrac{-13}{17};\dfrac{0}{3};\dfrac{-9}{-9};3,5;0;6,25\)
Số không là số hữu tỉ là \(\dfrac{3}{0}\)
\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}+\dfrac{x-3}{2009}+\dfrac{x-4}{2008}=4\)
=>\(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)+\left(\dfrac{x-3}{2009}-1\right)+\left(\dfrac{x-4}{2008}-1\right)=0\)
=>\(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}+\dfrac{x-2012}{2008}=0\)
=>\(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\)
=>x-2012=0
=>x=2012
\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}+\dfrac{x-3}{2009}+\dfrac{x-4}{2008}=4\\ \left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)+\left(\dfrac{x-3}{2009}-1\right)+\left(\dfrac{x-4}{2008}-1\right)=0\\ \dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}+\dfrac{x-2012}{2008}=0\\ \left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\\ x-2012=0\\ x=2012\)
\(\left[\left(\dfrac{4}{3}\right)^{-3}\cdot\left(\dfrac{3}{4}\right)^5\right]:\left(\dfrac{3}{8}\right)^7\\ =\left[\left(\dfrac{3}{4}\right)^3\cdot\left(\dfrac{3}{4}\right)^5\right]:\left(\dfrac{3}{8}\right)^7\\ =\left(\dfrac{3}{4}\right)^{3+5}:\dfrac{3^7}{8^7}\\ =\left(\dfrac{3}{4}\right)^8\cdot\dfrac{8^7}{3^7}\\ =\dfrac{3^8}{4^8}\cdot\dfrac{8^7}{3^7}\\ =\dfrac{3^8}{2^{16}}\cdot\dfrac{2^{21}}{3^7}=3\cdot2^5=3\cdot32=96\)
\(\left[\left(\dfrac{4}{3}\right)^{-3}\cdot\left(\dfrac{3}{4}\right)^5\right]:\left(\dfrac{3}{8}\right)^7\)
\(=\left[\left(\dfrac{3}{4}\right)^3\cdot\left(\dfrac{3}{4}\right)^5\right]:\dfrac{3^7}{8^7}\)
\(=\left(\dfrac{3}{4}\right)^8\cdot\dfrac{8^7}{3^7}=\dfrac{3^8}{4^8}\cdot\dfrac{8^7}{3^7}=\dfrac{3\cdot2^{21}}{2^{16}}=3\cdot2^5=3\cdot32=96\)
a: Các cặp góc đối đỉnh là: \(\widehat{xOt};\widehat{yOz}\) và \(\widehat{xOz};\widehat{yOt}\)
b: Các cặp góc kề bù là:
\(\widehat{xOt};\widehat{xOz}\)
\(\widehat{xOt};\widehat{tOy}\)
\(\widehat{zOy};\widehat{zOx}\)
\(\widehat{zOy};\widehat{tOy}\)
c: \(\widehat{xOt}+\widehat{xOz}=180^0\)(hai góc kề bù)
=>\(\widehat{xOz}+45^0=180^0\)
=>\(\widehat{xOz}=135^0\)
Ta có: \(\widehat{xOt}=\widehat{yOz}\)(hai góc đối đỉnh)
mà \(\widehat{xOt}=45^0\)
nên \(\widehat{yOz}=45^0\)
Ta có: \(\widehat{xOz}=\widehat{yOt}\)(hai góc đối đỉnh)
mà \(\widehat{xOz}=135^0\)
nên \(\widehat{yOt}=135^0\)
Bài 3:
Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4\cdot5};\dfrac{1}{6^2}< \dfrac{1}{5\cdot6};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\\=> \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =>\dfrac{1}{5^2}+\dfrac{1}{6^2}+..+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\left(1\right)\)
Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5\cdot6};\dfrac{1}{6^2}>\dfrac{1}{6\cdot7};...;\dfrac{1}{100^2}>\dfrac{1}{100\cdot101}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+..+\dfrac{1}{100\cdot101}\\ =>\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =>\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}=\dfrac{96}{505}>\dfrac{96}{576}=\dfrac{1}{6}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
a) Ta có: \(\widehat{cNb}+\widehat{MNb}=180^{\circ}\) (hai góc kề bù)
\(\Rightarrow\widehat{MNb}=180^{\circ}-\widehat{cNb}=180^{\circ}-55^{\circ}=125^{\circ}\)
b) Ta có: \(\widehat{MNb}=\widehat{aMN}\left(=125^{\circ}\right)\)
Mà hai góc này đều nằm ở vị trí so le trong
Nên \(Ma//Nb\)
a)
\(32< 2^x< 128\\ =>2^5< 2^x< 2^7\\ =>5< x< 7\\ =>x=6\)
b)
\(2\cdot16\ge2^x>4\\ =>2\cdot2^4\ge2^x>2^2\\ =>2^5\ge2^x>2^2\\ =>5\ge x>2\\ =>x\in\left\{3;4;5\right\}\)
c)
\(9\cdot27\le3^x\le243\\ =>3^2\cdot3^3\le3^x\le3^5\\ =>3^5\le3^x\le3^5\\ =>5\le x\le5\\ =>x=5\)
d)
\(x^{2019}=x\\ =>x^{2019}-x=0\\ =>x\left(x^{2018}-1\right)=0\)
TH1: x = 0
TH2: `x^2018-1=0`
`=>x^2018=1`
`=>x^2018=1^2018`
`=>x=1` hoặc `x=-1`
a: \(32< 2^x< 128\)
=>\(2^5< 2^x< 2^7\)
=>5<x<7
mà x là số tự nhiên
nên x=6
b: \(2\cdot16>=2^x>4\)
=>\(2^5>=2^x>2^2\)
=>2<x<=5
mà x là số tự nhiên
nên \(x\in\left\{3;4;5\right\}\)
c: \(9\cdot27< =3^x< =243\)
=>\(243< =3^x< =243\)
=>\(3^x=243=3^5\)
=>x=5
d: \(x^{2019}=x\)
=>\(x\left(x^{2018}-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^{2018}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^{2018}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e: \(2^{x+1}+4\cdot2^x=3\cdot2^7\)
=>\(2^x\cdot2+4\cdot2^x=6\cdot2^6\)
=>\(6\cdot2^x=6\cdot2^6\)
=>x=6
f: \(2^{2x}+2^{2x+3}=3^2\cdot8^4\)
=>\(2^{2x}+2^{2x}\cdot8=9\cdot8^4\)
=>\(9\cdot2^{2x}=9\cdot2^{12}\)
=>2x=12
=>x=6
g: \(27^{x+1}=9^{x+5}\)
=>\(3^{3\left(x+1\right)}=3^{2\left(x+5\right)}\)
=>3(x+1)=2(x+5)
=>3x+3=2x+10
=>3x-2x=10-3
=>x=7
h: \(3^{x+2}+5\cdot3^{x+1}=648\)
=>\(3^x\cdot9+5\cdot3^x\cdot3=648\)
=>\(3^x\cdot24=648\)
=>\(3^x=\dfrac{648}{24}=27=3^3\)
=>x=3