K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2024

 loading... loading... loading...  

18 tháng 5 2024

loading... Mình gửi hình nhé

18 tháng 5 2024

loading... 

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne9\end{matrix}\right.\)

\(B=\left(\dfrac{3}{x+3\sqrt{x}}-\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{x-9}{\sqrt{x}}\)

\(=\left(\dfrac{3}{\sqrt{x}\cdot\left(\sqrt{x}+3\right)}-\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{3\sqrt{x}-9-x-3\sqrt{x}}{x}=\dfrac{-x-9}{x}\)

Gọi số dãy ghế ban đầu trong hội trường là x(dãy)

(Điều kiện: \(x\in Z^+\))

Số ghế ban đầu trong 1 dãy ghế là \(\dfrac{120}{x}\left(ghế\right)\)

Số ghế lúc sau trong 1 dãy ghế là \(\dfrac{120}{x-2}\left(ghế\right)\)

Theo đề, ta có phương trình:

\(\dfrac{120}{x-2}-\dfrac{120}{x}=2\)

=>\(\dfrac{120x-120\left(x-2\right)}{x\left(x-2\right)}=2\)

=>\(2x\left(x-2\right)=120x-120x+240=240\)

=>x(x-2)=120

=>\(x^2-2x-120=0\)

=>(x-12)(x+10)=0

=>\(\left[{}\begin{matrix}x=12\left(nhận\right)\\x=-10\left(loại\right)\end{matrix}\right.\)

vậy: lúc đầu trong hội trường có 12 dãy ghế, mỗi dãy ghế có 120:12=10 ghế

a: Phương trình hoành độ giao điểm là:

\(x^2=2\left(m-2\right)x-m^2+4m+5\)

=>\(x^2-\left(2m-4\right)x+m^2-4m-5=0\)(1)

\(\Delta=\left[-\left(2m-4\right)\right]^2-4\cdot1\cdot\left(m^2-4m-5\right)\)

\(=4m^2-16m+16-4m^2+16m+20=36\)>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Vì \(\Delta=36\)

nên phương trình (1) luôn có 2 nghiệm phân biệt là:

\(\left[{}\begin{matrix}x=\dfrac{2m-4+\sqrt{36}}{2}=\dfrac{2m-4+6}{2}=\dfrac{2m+2}{2}=m+1\\x=\dfrac{2m-4-6}{2}=\dfrac{2m-10}{2}=m-5\end{matrix}\right.\)

\(\sqrt{x_1}=x_2+6\)

=>\(\left[{}\begin{matrix}\sqrt{m+1}=m-5+6\\\sqrt{m-5}=m+1+6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\sqrt{m+1}=m+1\\\sqrt{m-5}=m+7\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>=-1\\\left(m+1\right)^2=\left(m+1\right)\end{matrix}\right.\\\left\{{}\begin{matrix}m>=5\\\left(m+7\right)^2=m-5\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>=-1\\m\left(m+1\right)=0\end{matrix}\right.\\\left\{{}\begin{matrix}m>=5\\m^2+14m+49-m+5=0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m\in\left\{0;-1\right\}\\\left\{{}\begin{matrix}m>=5\\m^2+13m+54=0\end{matrix}\right.\end{matrix}\right.\)

=>\(m\in\left\{0;-1\right\}\)

0

\(P=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)

\(=\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)

\(=2\sqrt{x}+1-\sqrt{x}-1+1\)

\(=\sqrt{x}+3\)

22 tháng 5 2024

\(P=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)

\(P=\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)

\(P=2\sqrt{x}+1-\sqrt{x}-1+1\)

\(P=\sqrt{x}+1\)

 

17 tháng 5 2024

giải GIÚP MIK VS Ạ NHANH LÊN Ạ(  hiếm khi đẳng câu hỏi chẳng có ai huóng dẫn, thật sự ******** quá vô dụng)

1
AH
Akai Haruma
Giáo viên
18 tháng 5 2024

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{x}{4}+\frac{1}{x}\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}=1$
$\frac{3}{4}x\geq \frac{3}{4}.2=\frac{3}{2}$ do $x\geq 2$

Cộng theo vế 2 BĐT trên thu được:

$A\geq 1+\frac{3}{2}=\frac{5}{2}$
Vậy GTNN của $A$ là $\frac{5}{2}$. Giá trị này đạt được tại $x=2$

AH
Akai Haruma
Giáo viên
18 tháng 5 2024

Lời giải:

Áp dụng BĐT Cauchy Schwarz:

$A=\frac{a^2}{a+b}+\frac{b^2}{c+a}+\frac{c^2}{b+c}\geq \frac{(a+b+c)^2}{a+b+c+a+b+c}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}\geq \frac{6}{2}=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $a=b=c=2$