tìm \(x\inℤ\)để \(Q\inℤ\) với \(Q=\frac{\sqrt{x}-1}{\sqrt{x}-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+16}+8=3x+\sqrt{x^2+7}\)
\(\Leftrightarrow3x+\sqrt{x^2+7}-\sqrt{x^2+16}-8=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+7}-4\right)\left(\sqrt{x^2+7}+4\right)}{\sqrt{x^2+7}-4}-\frac{\left(\sqrt{x^2+16}+5\right)\left(\sqrt{x^2+16}-5\right)}{\sqrt{x^2+16}-5}+3x-9=0\)
\(\Leftrightarrow\frac{x^2+7-16}{\sqrt{x^2+7}-4}-\frac{x^2+16-25}{\sqrt{x^2+16}-5}+3\left(x-3\right)=0\)
\(\Leftrightarrow\frac{x^2-9}{\sqrt{x^2+7}-4}-\frac{x^2-9}{\sqrt{x^2+16}-5}+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x+3}{\sqrt{x^2+7}-4}-\frac{x+3}{\sqrt{x^2+16}-5}+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\\frac{x+3}{\sqrt{x^2+7}-4}-\frac{x+3}{\sqrt{x^2+16}-5}+3=0\end{cases}}\)
:v thoi
a. ta có :
\(\frac{5+2\sqrt{5}}{\sqrt{5}}+\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{5}+2+\left(3-\sqrt{5}\right)=5\)
b. chiều cao của cột cờ là : \(15\times tan35^o\simeq10.5m\)
ta có :
\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)
Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)
\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Vậy ta có đpcm
a, Xét tam giác AHB vuông tại H, đường cao MH
\(AH^2=AM.AB\)( hệ thức lượng ) (1)
Xét tam giác AHC vuông tại H, đường cao HN
\(AH^2=AN.AC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3)
b, Xét tam giác AMN và tam giác ACB ta có :
^A _ chung
\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
Vậy tam giác AMN ~ tam giác ACB ( c.g.c )
\(\frac{MN}{BC}=\frac{AM}{AC}\)(4)
Ta có : BC = HB + HC = 9 + 4 = 13 cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm
Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm
lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm
Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm
c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm
Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2
Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)
\(=39-\frac{108}{13}=\frac{399}{13}\)cm2
Bài 2 :
a, \(P=\frac{x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)Với x > 0 ; \(x\ne1\)
\(=\frac{x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{x+2\sqrt{x}+2}{\sqrt{x}}\)
b, Ta có : \(P=5\Rightarrow\frac{x+2\sqrt{x}+2}{\sqrt{x}}=5\Rightarrow x+2\sqrt{x}+2=5\sqrt{x}\)
\(\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\Leftrightarrow x=1\left(ktm\right);x=4\left(tm\right)\)
ĐK : x >= 0 , x khác 9
\(Q=\frac{\sqrt{x}-1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\frac{2}{\sqrt{x}-3}\)
Để \(Q\inℤ\Rightarrow\frac{2}{\sqrt{x}-3}\inℤ\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
đến đây bạn tự làm tiếp heng :p