Hãy điền những chữ số thích hợp vào dạng định lý FLT dưới đây
Ax + By = Cz. Bằng điều kiện A, B, C, x, y, z đều là các số nguyên dương trong đó x, y, z lớn hơn 2 còn A, B, C có cùng bội số chung nhỏ nhất.
Giải đc cho 500k -.-
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(x>0;x\ne1\)
\(A=\frac{x-1}{\sqrt{x}}:\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x-1}{\sqrt{x}}:\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)=\frac{x-1}{\sqrt{x}}:[\left(\sqrt{x}-1\right).\left(\frac{1}{\sqrt{x}}+\frac{-1}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)\)
\(=[\frac{x-1}{\sqrt{x}}:\left(\sqrt{x}-1\right)]:\left(\frac{1}{\sqrt{x}}+\frac{-1}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+1-1}{\sqrt{x}\left(1+\sqrt{x}\right)}\)
\(\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(1+\sqrt{x}\right)}{\sqrt{x}.\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}=\sqrt{x}+2+\frac{1}{\sqrt{x}}\)
chị hiểu ko ạ, nếu chị hiểu k dùm em ạ
câu này chủ yếu tập trung vào công thức nhé bạn
cos bình cộng sin bình bằng 1
thế cos vào tính sin
tan bằng sin chia cos
cot a bằng cos chia sin
thế nào ra nhé cẩn thận bạn có thể thiếu trường hợp nhé cám ơn nhiều
cần hõi gì cứ nhắn THẰNG THẦY LỢI YOUTUBE
ta có : \(sina=\sqrt{1-cos^2a}=\sqrt{1-0.4^2}=\frac{\sqrt{21}}{5}\)
ta có : \(\hept{\begin{cases}tana=\frac{sina}{cosa}=\frac{\sqrt{21}}{2}\\cota=\frac{1}{tana}=\frac{2}{\sqrt{21}}\end{cases}}\)
\(ĐKXĐ:x\ge\sqrt[3]{\frac{-7}{2}}\)
\(\left(6x\sqrt{2x^3+7}-18\right)=6x^3+2x-8-\left(4\sqrt{2x^3+7}-12\right)\)
\(\frac{36x^2\left(2x^3+7\right)-324}{6x\sqrt{2x^3+7}+18}=2\left(3x^3+x-4\right)-\frac{16\left(2x^3+7\right)-144}{4\sqrt{2x^3+7}+12}\)
\(\frac{72x^5+252x^2-324}{6x\sqrt{2x^3+7}+18}=2\left(x-1\right)\left(3x^2+3x+4\right)-\frac{32x^3-32}{4\sqrt{2x^3+7}+12}\)
\(\frac{36\left(2x^5+7x^2-9\right)}{6x\sqrt{2x^3+7}+18}=2\left(x-1\right)\left(3x^2+3x+4\right)-\frac{32\left(x-1\right)\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}\)
\(\frac{36\left(x-1\right)\left(2x^4+2x^3+2x^2+9x+9\right)}{6x\sqrt{2x^3+7}+18}=2\left(x-1\right)\left(3x^2+3x+4\right)-\frac{32\left(x-1\right)\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}\)
\(\left(x-1\right)\left[\frac{36\left(2x^4+2x^3+2x^2+9x+9\right)}{6x\sqrt{2x^3+7}+18}+\frac{32\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}-2\left(3x^2+3x+4\right)\right]=0\)
\(\orbr{\begin{cases}x=1\left(TM\right)\\\frac{36\left(2x^4+2x^3+2x^2+9x+9\right)}{6x\sqrt{2x^3+7}+18}+\frac{32\left(x^2+x+1\right)}{4\sqrt{2x^3+7}+12}-2\left(3x^2+3x+4\right)=0\end{cases}}\)
chưa biết cm câu cuối thế nào :v
a. Điều kiện xác định: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)
b. ta có :\(\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}=A\)
c.\(\left|x\right|=3\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow A=\frac{3-2}{3+2}=\frac{1}{5}\\x=-3\Rightarrow A=\frac{-3-2}{-3+2}=5\end{cases}}\)
a. \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)=\left(\frac{x-1}{2\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right).\left(\frac{-4x}{x-1}\right)=-2\sqrt{x}\)
Để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\)
Đáp án:
A, B, C có bội số chung nhỏ nhất là 6
Giải thích các bước giải:
A= 1, B= 2, B=3
x= 8, y=5, z=3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội số chung nhỏ nhất là 6.
Chúc bạn học tốt ^^
A= 1, B= 2, B=3
x= 8, y=5, z=3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội số chung nhỏ nhất là 6.
h tủng hộ mk nha
hok tốt