Lập được bao nhiêu số chẵn có hai chữ số khác nhau từ hai trong năm chữ số 0; 1; 2; 6; 7
Con nhờ thầy cô giáo hướng dẫn giải chi tiết bài toán trên ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3x-5y=19
=>x(y+3)-5y-15=4
=>(x-5)(y+3)=4
=>\(\left(x-5;y+3\right)\in\left\{\left(1;4\right);\left(4;1\right);\left(-1;-4\right);\left(-4;-1\right);\left(2;2\right);\left(-2;-2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(6;1\right);\left(9;-2\right);\left(4;-7\right);\left(1;-4\right);\left(7;-1\right);\left(3;-5\right)\right\}\)
Đội công nhân sửa: 455 x 9 = 4095 (m)
Trong 8 ngày đầu, đội công nhân sửa được: 460 x 8 = 3680 (m)
Ngày thứ 9, đội đó sửa được: 4095 - 3680 = 415 (m)
Đáp số: 415m đường
Đội công nhân sửa: 455 x 9 = 4095 (m)
Trong 8 ngày đầu, đội công nhân sửa được: 460 x 8 = 3680 (m)
Ngày thứ 9, đội đó sửa được: 4095 - 3680 = 415 (m)
Đáp số: 415m đường
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và BC=2DE
b: Xét ΔAFB có
D là trung điểm của AB
DI//FB
Do đó: I là trung điểm của AF
Xét ΔAFB có ID//FB
nên \(\dfrac{ID}{FB}=\dfrac{AD}{AB}=\dfrac{1}{2}\)
Xét ΔAFC có IE//FC
nên \(\dfrac{IE}{FC}=\dfrac{AE}{AC}=\dfrac{1}{2}\)
Do đó: \(\dfrac{ID}{FB}=\dfrac{IE}{FC}\)
mà ID=IE(I là trung điểm của DE)
nên FB=FC
=>F là trung điểm của BC
Xét tứ giác AEFD có
I là trung điểm chung của AF và ED
=>AEFD là hình bình hành
Hình bình hành AEFD có \(\widehat{EAD}=90^0\)
nên AEFD là hình chữ nhật
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
I là trung điêm của DE
=>ID=IE=DE/2=2,5(cm)
=>AI=ED/2=2,5(cm)
ΔABC vuông tại A
mà AF là đường trung tuyến
nên AF=BC/2=5(cm)
Xét ΔABC có
BE,AF là các đường trung tuyến
BE cắt AF tại K
Do đó: K là trọng tâm của ΔABC
=>\(AK=\dfrac{2}{3}AF=\dfrac{2}{3}\cdot5=\dfrac{10}{3}\left(cm\right)\)
AI+IK=AK
=>\(IK+2,5=\dfrac{10}{3}\)
=>\(IK=\dfrac{10}{3}-\dfrac{5}{2}=\dfrac{20}{6}-\dfrac{15}{6}=\dfrac{5}{6}\left(cm\right)\)
Có \(y'=\dfrac{5x^2+2mx-3m+5}{\left(5x+m\right)^2}\)
Để hàm số đã cho nghịch biến trên \(\left(-3,1\right)\) thì 2 điều kiện sau đồng thời phải được thỏa mãn:
ĐK 1: \(5x^2+2mx-3m+5\le0,\forall x\in\left(-3,1\right)\)
\(\Leftrightarrow\left(2x-3\right)m\le-5x^2-5,\forall x\in\left(-3;1\right)\)
\(\Leftrightarrow m\ge\dfrac{-5x^2-5}{2x-3},\forall x\in\left(-3;1\right)\)
\(\Leftrightarrow m\ge\max\limits_{\left(-3;1\right)}\left(\dfrac{-5x^2-5}{2x-3}\right)\)
Xét \(f\left(x\right)=\dfrac{-5x^2-5}{2x-3}\) trên \(\left(-3;1\right)\)
Ta có \(f'\left(x\right)=\dfrac{-10x^2+30x+10}{\left(2x-3\right)^2}\)
\(f'\left(x\right)=0\Leftrightarrow-10x^2+30x+10=0\) \(\Leftrightarrow x^2-3x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{13}}{2}\left(loại\right)\\x=\dfrac{3-\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)
BBT:
Dựa vào BBT, ta thấy \(\max\limits_{\left(-3;1\right)}f\left(x\right)=10\). Do vậy \(m\ge10\)
ĐK 2: phương trình \(5x+m=0\Leftrightarrow m=-5x\) vô nghiệm trên \(\left(-3,1\right)\)
Khi đó xét \(g\left(x\right)=-5x\), hiển hiên \(g\left(x\right)\) nghịch biến trên \(\left(-3,1\right)\)
\(\Rightarrow g\left(1\right)< g\left(x\right)< g\left(-3\right)\) \(\Leftrightarrow-5< g\left(x\right)< 15\)
Vậy \(\left[{}\begin{matrix}m\le-5\\m\ge15\end{matrix}\right.\)
Kết hợp với ĐK 1, ta có \(m\ge15\)
Mà \(m\inℤ^+,m\le2024\) nên \(m\in\left\{15,16,17,...,2024\right\}\)
\(\Rightarrow\) Có tất cả \(2024-15+1=2010\) giá trị m thỏa ycbt.
Bài giải
Vận tốc của ô tô khi đi từ A đén B lúc 10h là:
60÷3×2=40(km/giờ)
Thời gian ô tô đi với vận tốc 40km/giờ hơn thời gian đi với vận tốc 60km/giờ là:
10 giờ-8 giờ 30 phút=1 giờ 30 phút.
Đổi 1 giờ 30 phút=1,5 giờ.
Hiệu số phần bằng nhau là:
3-2=1(phần)
Thời gian đi với vận tốc 60 km/giờ là:
1,5×2=3 giờ)
Xe xuất phát số thời gian là:
8 giờ 30 phút-3 giờ=5 giờ 30 phút.
Quãng đường AB dài là:
3×60=180(km)
Đ/S: 5 giờ 30 phút.
180 km.
Thời gian Thảo đi từ nhà đến trường là:
10:40=0,25(giờ)=25(phút)
Thảo đi từ nhà lúc:
6h40p-25p=6h15p
a: \(1+2\sqrt{x}+x=\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot1+1^2=\left(\sqrt{x}+1\right)^2\)
b: \(a+2\sqrt{a}+1=\left(\sqrt{a}\right)^2+2\cdot\sqrt{a}\cdot1+1^2=\left(\sqrt{a}+1\right)^2\)
d: \(x-2\sqrt{xy}+y=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\sqrt{y}+\left(\sqrt{y}\right)^2\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)
e: \(x^2-1=x^2-1^2=\left(x-1\right)\left(x+1\right)\)
f: \(9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\)
g: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
h: \(1-x\sqrt{x}=1^3-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)
i: \(x\sqrt{x}+1=\left(\sqrt{x}\right)^3+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
j: \(a\sqrt{a}-1=\left(\sqrt{a}\right)^3-1^3=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)
k: \(x\sqrt{x}-8=\left(\sqrt{x}\right)^3-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)
l: \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
các số như 12670,12076,10276,62170, còn lại e tự đoán
96 số