Giải phương trình:
\(\sqrt[3]{x+5}-\sqrt[3]{x-5}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ bạn nên sửa CD thành AC bạn nhé do ko có D á
a, Ta có d(O;AB) = OI
d(O;AC) = OJ
mà AB > AC ( 5 cm > 2 cm )
=> OT < OJ
b, Vì OI vuông AB => I là trung điểm AB
=> IB = AB/2 = 5/2 cm
Theo định lí Pytago tam giác OIB vuông tại I
\(OB^2=IB^2+OI^2\Rightarrow OI^2=OB^2-IB^2=9-\frac{25}{4}=\frac{36-25}{4}=\frac{11}{4}\Rightarrow OI=\frac{\sqrt{11}}{2}\)cm
Vì OJ vuông AC => J là trung điểm AC
=> JA = AC/2 = 1 cm
Theo định lí Pytago cho tam giác OAJ vuông tại J
\(AO^2=JO^2+JA^2\Rightarrow JO^2=AO^2-JA^2=9-1=8\Rightarrow JO=2\sqrt{2}\)cm
Theo BĐT Cauchy ta có :
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{xz}\)
Nhân vế với vế của bđt ta được : \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}\)
\(=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu ''='' xảy ra khi x = y = z = 1
Lời giải:
Gọi dây trên là dây AB. Hạ OH⊥⊥AB = {H} (cd)
Xét (O) 1 phần đường kính OH: OH⊥⊥AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)
OH⊥⊥AB = {H} (cd) => ΔΔOHB vuông tại H (đn)
=> OH22+ HB22= OB22(Đl Py-ta-go)
T/s: OH22+ 622= R22
<=> OH22+36 = 1022=100
<=> OH22= 64 => OH = 8 (cm)
Gọi H là chân đường cao kẻ từ O
=> H là trung điểm AB
=> AH = AB/2 = 12/2 = 6 cm
Theo định lí Pytago cho tam giác AOH vuông tại H
\(AO^2=OH^2+AH^2\Rightarrow OH^2=AO^2-AH^2=100-36=64\Rightarrow OH=8\)cm
Ta có : BE // AC ; ^BAC = 900 => ^ABC = 900
Xét tam giác ABE vuông tại B, đường cao BH
* Áp dụng hệ thức : \(BH^2=AH.HE=16.9\Rightarrow BH=4.3=12\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{12}=\frac{89}{3}\)cm
=> BC = CH + BH = 12 + 89/3 = 125/3 cm
Áp dụng định lí Pytago tam giác CHE vuông tại H
\(CE^2=CH^2+HE^2=\frac{7921}{9}+81\Rightarrow CE=\frac{5\sqrt{346}}{3}\)cm
\(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu ''='' xảy ra khi x = -1
Vậy ta có đpcm
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)\div\frac{a+2}{a-2}\left(a\ne\pm2;a\ne1;a>0\right)\)
\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\frac{a-2}{a+2}\)
\(A=\left(\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}\right).\frac{a-2}{a+2}\)
\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right).\frac{a-2}{a+2}\)
\(A=\frac{2\sqrt{a}}{\sqrt{a}}.\frac{a-2}{a+2}\)
\(A=\frac{2\left(a-2\right)}{a+2}\)
\(A=\frac{2a-4}{a+2}\)