giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{576}=\frac{1}{1600}+\frac{1}{AB^2}\Rightarrow AB=30\)cm
Theo Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AC^2+AB^2}=50\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{900}{50}=18\)cm
=> CH = BC - BH = 50 - 18 = 32 cm
a, Vẽ AD là đường phân giác của tam giác ABC . Vẽ BH là đường cao của tam giác ABD
Tam giác ABC có AD là phân giác nên :
\(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD}{AB}=\frac{BD+DC}{AB+AC}=\frac{BC}{AB+AC}\)
Vậy \(\frac{BD}{AB}=\frac{a}{b+c}.\)Do đó \(BH\perp AN\)nên \(BH\le BD\)
b, Tam giác HAB vuông tại H nên \(sinBAH=\frac{BH}{AB}\Rightarrow sin\frac{A}{2}=\frac{BH}{AB}\le\frac{BD}{AB}=\frac{a}{b+c}\)
Tương tự ta có \(sin\frac{B}{2}=\frac{b}{c+a},sin\frac{C}{2}=\frac{c}{b+a}\)
Do đó \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{a.b.c}{\left(b+c\right)\left(a+c\right)\left(a+b\right)}\)
Áp dụng BĐT Cô Si cho hai số dương ta có :
\(\frac{a.b.c}{\left(b+c\right)\left(a+c\right)\left(a+b\right)}\le\frac{1}{8}.\)Vậy \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
\(a,2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\\x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\13\sqrt{2x}=28\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{2x}=\frac{28}{13}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\2x=\frac{784}{169}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{392}{169}\end{cases}}\Leftrightarrow x=\frac{392}{169}\)
\(b,\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\) ( ĐKXĐ : \(x\ge5\))
\(\Rightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\)
Với \(x;y\ge0\)
\(x-2\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2\)
a, \(y=\sqrt{x^2-2x+5}=\sqrt{x^2-2x+1+4}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)
Dấu ''='' xảy ra khi x = 1
Vậy GTNN của bth trên bằng 2 tại x = 1
b, \(y=\sqrt{\frac{x^2}{4}-\frac{x}{6}+1}=\sqrt{\frac{x^2}{4}-2.\frac{x}{2}.\frac{1}{6}+\frac{1}{36}+\frac{35}{36}}\)
\(=\sqrt{\left(\frac{x}{2}-\frac{1}{6}\right)^2+\frac{35}{36}}\ge\sqrt{\frac{35}{36}}=\frac{\sqrt{35}}{6}\)
Dấu ''='' xảy ra khi \(\frac{x}{2}=\frac{1}{6}\Rightarrow x=\frac{1}{3}\)
Vậy GTNN của bth trên bằng \(\frac{\sqrt{35}}{6}\)tại x = 1/3
Đồ thị hàm số đã cho cắt trục hoành tịa điểm có hoành độ bằng \(\frac{3}{4}\)nên
\(0=\left(2-3m\right).\frac{3}{4}+m^2-1\)
\(\Leftrightarrow m^2-\frac{9}{4}m+\frac{1}{2}=0\)
\(\Leftrightarrow4m^2-9m+2=0\)
\(\Leftrightarrow4m^2-8m-m+2=0\)
\(\Leftrightarrow\left(4m-1\right)\left(m-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{4}\\m=2\end{cases}}\).
\(a,\sqrt{4\left(1+6x+9x^2\right)^2}=\sqrt{4\left(3x+1\right)^4}\)
\(=2\left(3x+1\right)^2\)Với \(x=-\sqrt{2}\)
\(=2\left(3.-\sqrt{2}+1\right)^2=2.\left(18-6\sqrt{2}+1\right)\)
\(=38-12\sqrt{2}\)
\(b,\sqrt{9a^2\left(b^2-4b+4\right)}=\left|3a\right|.\left|b-2\right|=\left|3.\left(-2\right)\right|.\left|-\sqrt{3}-2\right|\)
\(=6.\left(\sqrt{3}+2\right)=12+6\sqrt{3}\)