K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=> ΔΔBCE vuông tại E => HC=BC2CE=BC22ACHC=BC2CE=BC22AC

AH=AC−HC=AC−BC22AC=2AC2−BC22ACAH=AC−HC=AC−BC22AC=2AC2−BC22AC

⇒AHHC=2(ACBC)2−1

Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:

    2 = 2m + 1 và 3k = 2k – 3

HT

2 tháng 10 2021

1512959464_11.jpgcâu a đây mong bạn tham thảo

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

2 tháng 10 2021
Khó hiểu ghê lun ó
2 tháng 10 2021

Anser reply image

Lai cho cá vàng đi ạ

 
2 tháng 10 2021

a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)

Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số  \(a'=2m+1,b'=2k-3\)

Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)

                                                                      \(\Leftrightarrow m\ne-\frac{1}{2}\)

Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:

         \(2=2m+1\) và \(3k\ne2k-3\)

Kết hợp với điều kiện trên ta có:  \(m=\frac{1}{2}.k\ne-3\)

 b) Hai đường thẳng song song:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)

c) Hai đường thẳng trùng nhau:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)