Cho hai đường thẳng \(\left(d_1\right)\): y = \(\frac{3}{2}x+6\)và \(\left(d_2\right)\): y= \(-3x-3\)
a) vẽ \(\left(d_1\right)\)và \(\left(d_2\right)\)trên cùng hệ trục tọa độ Õy
b) Tìm tọa độ giao điểm M của \(\left(d_1\right)\)và \(\left(d_2\right)\)
c) Viết pt đường thẳng song song với \(\left(d_1\right)\)và cắt \(\left(d_2\right)\)tại điểm A có hoành độ bằng \(\frac{-4}{3}\)
a) Vẽ tương đối (d1), (d2)
O y x 6 -4 d1 -1 -3 d2
b) Phương trình hoành độ giao điểm của (d1) và (d2):
\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)
\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)
\(\Leftrightarrow\)\(x=\)\(-2\)
\(\Rightarrow\)\(y=3\)
Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)
c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b
(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)
A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)
Thay tọa độ A vào đường thẳng (d) ta có :
1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b
\(\Leftrightarrow\)b = 3
Vậy (d): y =\(\frac{3}{2}\) \(x+3\)
:3