tính các độ dài các cạnh còn lại của hình chóp . Xác định số đo các của góc tam giác mnp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB=\dfrac{12^2}{16}=9\left(cm\right)\)
BC=BH+CH=9+16=25(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(DN=NC=\dfrac{DC}{2}\)
\(BE=EC=\dfrac{BC}{2}\)
mà AB=DC=BC
nên AM=MB=DN=NC=BE=EC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Xét ΔMBC vuông tại B và ΔECD vuông tại C có
MB=EC
BC=CD
Do đó: ΔMBC=ΔECD
=>\(\widehat{BMC}=\widehat{CED}\)
=>\(\widehat{CED}+\widehat{ECM}=90^0\)
=>CM\(\perp\)DE
c: ΔMBC=ΔECD
=>MC=ED
a: ĐKXĐ: \(x\notin\left\{-1;0;1\right\}\)
\(\dfrac{x+3}{x+1}-\dfrac{x-1}{x}=\dfrac{3x^2+4x+1}{x\left(x-1\right)}\)
=>\(\dfrac{x\left(x+3\right)-\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}=\dfrac{3x^2+4x+1}{x\left(x-1\right)}\)
=>\(\dfrac{x^2+3x-x^2+1}{\left(x^2+x\right)}=\dfrac{3x^2+4x+1}{x\left(x-1\right)}\)
=>\(\dfrac{\left(3x+1\right)\left(x-1\right)}{x\left(x+1\right)\left(x-1\right)}=\dfrac{\left(3x^2+4x+1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)
=>\(\left(3x^2+4x+1\right)\left(x+1\right)=\left(3x+1\right)\left(x-1\right)\)
=>\(\left(3x+1\right)\left(x^2+2x+1\right)-\left(3x+1\right)\left(x-1\right)=0\)
=>\(\left(3x+1\right)\left(x^2+2x+1-x+1\right)=0\)
=>\(\left(3x+1\right)\left(x^2+x+2\right)=0\)
mà \(x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)
nên 3x+1=0
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
b: ĐKXĐ: \(x\notin\left\{-3;-1\right\}\)
\(\dfrac{x}{2\left(x+3\right)}+\dfrac{x}{2x+2}=\dfrac{-x}{\left(x+1\right)\left(x+3\right)}\)
=>\(\dfrac{x}{2\left(x+3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{-x}{\left(x+1\right)\left(x+3\right)}\)
=>\(\dfrac{x\left(x+1\right)+x\left(x+3\right)}{2\left(x+3\right)\left(x+1\right)}=\dfrac{-2x}{2\left(x+1\right)\left(x+3\right)}\)
=>\(x^2+x+x^2+3x=-2x\)
=>\(2x^2+6x=0\)
=>2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: \(x\notin\left\{0;\dfrac{3}{2}\right\}\)
\(\dfrac{1}{2x-3}=\dfrac{3}{2x^2-3x}+\dfrac{x}{5}\)
=>\(\dfrac{x-3}{x\left(2x-3\right)}=\dfrac{x}{5}\)
=>\(x^2\left(2x-3\right)=5\left(x-3\right)\)
=>\(2x^3-3x^2-5x+15=0\)
=>\(x\simeq-1,9\left(nhận\right)\)
d: ĐKXĐ: \(x\notin\left\{0;-2\right\}\)
\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)
=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)
=>\(\left(x+2\right)^2=x^2+5x+4+x^2\)
=>\(2x^2+5x+4-x^2-4x-4=0\)
=>\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
\(x^4+1997x^2+1996x+1997\)
\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(1997x^2+1997x+1997\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
\(4\left(x-2\right)-3\left(x+1\right)=5\)
\(\Leftrightarrow4x-8-3x-3=5\)
\(\Leftrightarrow\left(4x-3x\right)=5+8+3\)
\(\Leftrightarrow x=16\)
Vậy \(x=16\)
\(sin^210+sin^220+sin^245+sin^270+sin^280\)
\(=sin^210+sin^220+sin^245+cos^220+cos^210=1+1+sin^245=2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(sin^210^0+sin^220^0+sin^245^0+sin^270^0+sin^280^0\)
\(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+\left(sin^245^0\right)\)
\(=\left(sin^210^0+cos^210^0\right)+\left(sin^220^0+cos^220^0\right)+\left(\dfrac{1}{2}\right)\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
\(x^3+5x^2+8x+4\)
\(=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
\(\text{Sửa đề }:x^4-3x+2=(x-1)(x^3+ax^2+bx-2)\\\Leftrightarrow x^4-x^3+x^3-x^2+x^2-x-2x+2=(x-1)(x^3+ax^2+bx-2)\\\Leftrightarrow x^3(x-1)+x^2(x-1)+x(x-1)-2(x-1)=(x-1)(x^3+ax^2+bx-2)\\\Leftrightarrow (x-1)(x^3+x^2+x-2)=(x-1)(x^3+ax^2+bx-2)\\\Rightarrow a=b=1\)
Vì \(S.MNP\) là hình chóp tam giác đều
nên \(SM=SN=SP=5\left(cm\right)\) và \(\triangle MNP\) đều (t/c)
\(\Rightarrow\left\{{}\begin{matrix}MN=NP=PM=10\left(cm\right)\\\widehat{MNP}=\widehat{NPM}=\widehat{PMN}=60^{\circ}\end{matrix}\right.\)