Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Thể tích nước trong thùng ban đầu là:
\(V_1=x\cdot a\cdot b\left(dm^3\right)\)
Diện tích đáy trong thùng sau khi nghiêng là:
\(S_{đáy}=\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)
Thể tích nước sau khi nghiêng thùng là: \(V_2=3a\cdot b\left(dm^3\right)\)
Vì thể tích nước trước và sau khi nghiêng thùng đều không thay đổi nên \(x\cdot a\cdot b=3\cdot a\cdot b\)
=>x=3

Thể tích nước trong thùng ban đầu là:
\(V_1=x\cdot a\cdot b\left(dm^3\right)\)
Diện tích đáy trong thùng sau khi nghiêng là:
\(S_{đáy}=\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)
Thể tích nước sau khi nghiêng thùng là: \(V_2=3a\cdot b\left(dm^3\right)\)
Vì thể tích nước trước và sau khi nghiêng thùng đều không thay đổi nên \(x\cdot a\cdot b=3\cdot a\cdot b\)
=>x=3

a) \(\left|x-5\right|-\left|x-7\right|\le\left|x-5-x+7\right|=2\)
Dấu "=" xảy ra:
`(x-5)(x-7)<=0<=>5<=x<=7`
b) \(\left|3x-5\right|-\left|7-3x\right|=\left|3x-5\right|-\left|3x-7\right|\le\left|3x-5-3x+7\right|=2\)
Dấu "=" xảy ra:
`(3x-5)(3x-7)<=0<=>5/3<=x<=7/3`
c) \(\left|1-x\right|-\left|2-x\right|\le\left|1-x-2+x\right|=1\)
Dấu "=" xảy ra:
`(1-x)(2-x)<=0<=>(x-1)(x-2)<=0<=>1<=x<=2`

On là phân giác của góc xOz
=>\(\widehat{xOn}=\dfrac{\widehat{xOz}}{2}=\dfrac{180^0}{2}=90^0\)


\(25^x:5^4=125^2\)
\(\left(5^2\right)^x:5^4=\left(5^3\right)^2\)
\(5^{2x}:5^4=5^6\)
\(5^{2x-4}=5^6\)
\(2x-4=6\)
\(2x=4+6\)
\(2x=10\)
\(x=5\)

\(1,\dfrac{2}{3}+\dfrac{1}{3}:x=\dfrac{4}{3}\\ =>\dfrac{1}{3}:x=\dfrac{4}{3}-\dfrac{2}{3}\\ =>\dfrac{1}{3}:x=\dfrac{2}{3}\\ =>x=\dfrac{1}{3}:\dfrac{2}{3}=\dfrac{1}{2}\\ 2,\dfrac{4}{5}+\dfrac{1}{3}:x=\dfrac{2}{3}\\ =>\dfrac{1}{3}:x=\dfrac{2}{3}-\dfrac{4}{5}=-\dfrac{2}{15}\\ =>x=\dfrac{1}{3}:\dfrac{-2}{15}=\dfrac{-5}{2}\\ 3,\dfrac{2}{3}+\dfrac{5}{2}:x=\dfrac{3}{4}\\ =>\dfrac{5}{2}:x=\dfrac{3}{4}-\dfrac{2}{3}\\ =>\dfrac{5}{2}:x=\dfrac{1}{12}\\ =>x=\dfrac{5}{2}:\dfrac{1}{12}=30\)


Do \(\widehat{xOy}\) và \(\widehat{yOz}\) là 1 góc kề bù nên:
\(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Rightarrow2.\widehat{yOz}+\widehat{yOz}=180^0\) (do \(\widehat{xOy}=2.\widehat{yOz}\))
\(\Rightarrow3.\widehat{yOz}=180^0\)
\(\Rightarrow\widehat{yOz}=180^0:3=60^0\)
\(\Rightarrow\widehat{xOy}=2.\widehat{yOz}=2.60^0=120^0\)