(X)2+25-56:32-3X5-35+6=15365988
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)ta có \(\Delta\)ABC cân tại A(AB=AC)
mà AH là đường trung tuyến(H là trung điểm BC)
nên AH là đường cao,đường phân giác,đường trung trực
xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH(ah là đường cao) có:
AB=AC(gt)
AH là cạnh chung
nên \(\Delta\)ABH=\(\Delta\)ACH
b)xét \(\Delta\)vuông AHE và \(\Delta\)vuông AHF có
AH là cạnh chung
góc EAH=góc FAH(AH là đường phân giác)
nên \(\Delta\)AHE=\(\Delta\)AHF
c)xét \(\Delta\)AEN và \(\Delta\)AFM có
AE=AF(\(\Delta\)AHE=\(\Delta\)AHF)
góc EAH=góc FAH(AH là đường phân giác)
góc NEA=góc MFA(\(\Delta\)AHE=\(\Delta\)AHF)
nên \(\Delta\)AEN=\(\Delta\)AFM
nên AM=AN
mà AE=AF
nên ME=NF(chứng minh xong)
xét \(\Delta\)MEN và \(\Delta\)MFN có
ME=NF
EF là cạnh chung
góc FME=góc ENF(\(\Delta\)AEN=\(\Delta\)AFM)
nên \(\Delta\)MEN=\(\Delta\)MFN
nên MF=NE
d)ta có \(\Delta\)AMN cân tại A(AM=AN)
nên góc AMN=góc ANM
mà góc AEN=góc AFM(\(\Delta\)AEN=\(\Delta\)AFM)
nên góc ENM=góc FMN
nên 2 góc HMN=góc ENM+góc FMN
ta có \(\Delta\)HEF cân tại H(HE=HF)
nên góc HEF=góc HFE=2 góc HFE
ta có 2 góc HEF+góc EHF=2 góc HMN+góc MHN=180 độ
mà góc EHF=góc MHN(đối đỉnh)
nên 2 góc HMN=2 góc HEF
nên góc HMN=góc HEF
mà 2 góc này ở vị trí slt
nên EF//MN

cho tam giác abc có góc a bằng 70 độ góc b bằng 55 độ tam giác abc có phải tam giác cân không vì sao

tam giác ABC tam giác cân vì có góc b và góc c bằng nhau vì a+b+c=180 độ
=> c=180-55-70=55
=>b=c
\(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-70^0-55^0=55^0\)
Ta thấy \(\widehat{B}=\widehat{C}\left(=55^0\right)\)
Nên tam giác ABC cân tại A

Học sinh giỏi: 8
Học sinh khá:12
học sinh trung bình:15
Học sinh yếu:10

\(P=-\left(x+5\right)^2-\left|x-y+1\right|+2018=0\)
Vì \(\left(x+5\right)^2\ge0\Rightarrow-\left(x+5\right)^2\le0\) và \(\left|x-y+1\right|\ge0\Rightarrow-\left|x-y+1\right|\le0\)
Suy ra : \(P\le2018\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}-\left(x+5\right)^2=0\\-\left|x-y+1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(x+5\right)=0\\\left|x-y+1\right|=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+5=0\\x-y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=-4\end{cases}}\)
Vậy \(P_{max}=2018\Leftrightarrow\hept{\begin{cases}x=-5\\y=-4\end{cases}}\)

Gọi số học sinh đạt hsg của 3 lớp lần lượt là x , y , z ta có:
\(\frac{x}{5}\)= \(\frac{y}{4}\) (vì x tỉ lệ với 5 còn y tỉ lệ với 4)
\(\frac{y}{3}\)=\(\frac{z}{5}\)(vì y tỉ lệ với 3 còn z tỉ lệ với 5)
và giả thiết bài toán là x+y+z = 47
Nhân chéo lại ta được => \(\hept{\begin{cases}4x=5y\\5y=3z\\x+y+z=47\end{cases}}\)
giải hệ ta được x=15 ; y=12; z=20