Chứng minh rằng biểu thức B = \(\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\) có giá trj là một số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{x}\)+ \(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)
Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0 bđt \(\Delta\))
Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế 3 bđt trên ta được:
2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ
Phần cuối bạn làm như thế này nhé:
C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)
Đặt B = 2017 => B + 1 = 2018
Khi B bằng:
\(B=\sqrt{1+B^2+\frac{B}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{\left(B+1\right)^2+B^2\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{B^2\left(B+1\right)^2+2B\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{\left[B\left(B+1\right)+1\right]^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\frac{B^2+B+1}{B+1}+\frac{B}{B+1}\left(\text{vi}:a>0\right)\)
\(B=\frac{B^2+2B+1}{B+1}\)
\(B=\frac{\left(B+1\right)^2}{B+1}\)
\(B=B+1\left(\text{vi}:a>0\Rightarrow B+1>0\right)\)
\(B=2017+1\left(\text{vi}:B=2017\right)\)
\(\Rightarrow B=2018\)