Tìm số có hai chữ số sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương các chữ số của số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi giá nhập là: 100%
Vậy giá niêm yết là: 100% + 20% = 120%,
Giá bán ra = 80% giá niêm yết nên giá bán bằng
120% x 80% = 96% giá nhập
(100%-96%)= 40 000 đ => Giá nhập là : 40 000 : 4% = 1 000 000
Đ/s: 1 000 000
Ta dễ dàng chứng minh BĐT
\(x^4+y^4\ge x^3y+xy^3\)
\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Chứng minh tương tự, cộng theo vế, ta có:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)
Dấu "=" xảy ra khi x=y=z=1/3
Gọi số cần tìm là : \(\overline{ab}\left(a\ne0\right)\)
Theo đề ra ta có:
\(\overline{ab}\left(a+b\right)=a^3+b^3\)
\(\Leftrightarrow10a+b=a^2-ab+b^2=\left(a+b\right)^2-3ab\)
\(\Leftrightarrow9a+3ab=\left(a+b\right)^2-\left(a+b\right)\)
\(\Leftrightarrow3a\left(a+b\right)=\left(a+b\right)\left(a+b-1\right)\)
Vì (a+b)và (a+b−1) là hai số nguyên tố cùng nhau cho nên:
TH1: \(\hept{\begin{cases}a+b=3a\\a+b-1=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=8\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+b-1=3a\\a+b=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=7\end{cases}}\)
Vậy số cần tìm là 48 hoặc 37