Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)
ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)
<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)
vì x,y là số nguyên nên A cũng nguyên
mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)
=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)
bạn tự giải nha
sai sai ở đâu đấy anh bạn, đây là phương trình chứ đâu có liên quan đến bất đẳng thức đâu.
p(x)=\(x^3+ã^2+bx+c\)
với x=1 thì p(1)=0 hay
\(1+a+b+c=0\)
p(x) \(chia\)p(x-2) dư 6
với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)
tương tự với cái còn lại
xong bạn giải hệ phương trình bậc nhất ba ẩn là xong
\(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{12+2.2\sqrt{3}.1+1}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{3-2.\sqrt{3}.1+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2.\sqrt{3}.1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Cho mk hỏi muốn rút gọn biểu thức có chứa căn bậc 4 thì làm thế nào nhỉ
Chỉ có cách là bạn phải phân tích số trong biểu thức ra làm căn bậc hai sau đó giải quyết căn 4 thành căn 2
Tùy vào đề bài sẽ có cách làm nha
HT