K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

kết quả = 8 

BẠN TK CHO MK , MK TK LẠI

26 tháng 3 2017

4+4=9 

mk nhanh nhất , tk nha

26 tháng 3 2017

Bn nói gì v

26 tháng 3 2017

bạn nói j vậy nico robin

26 tháng 3 2017

Bài này dễ ẹc, cho tí não vào là ok 

Giải

Dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\) khi đó ta tìm dc \(S=2\)

Ta sẽ chứng minh nó là GTNN của \(S\)

Thật vậy, theo BĐT Cauchy-Schwarz ta có: 

\(Σ\frac{a^2+b}{b+c}\ge\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\)

Vậy ta chỉ cần chứng minh rằng \(\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\ge2\)

\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)

BĐT cuối cùng có thể biến đổi như sau:

\(1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)

\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2-2Σa^3+2Σab\)

\(\Leftrightarrow\left(Σa^2\right)^2+2Σa^3\geΣa^2\) điều này đúng, vì 

\(Σa^3\ge\frac{Σa^2}{3}\)(BĐT Chebyshev). Và \(\left(Σa^2\right)^2\ge\frac{Σa^2}{3}\)

26 tháng 3 2017

Mình cần người giải giúp bài toán giúp mk ha

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                  <
26 tháng 3 2017

qưertyuio

26 tháng 3 2017

má lớp mấy rối mà tuyển bạn trai

26 tháng 3 2017

lop 5 đấy

26 tháng 3 2017

Cộng vế với vế ta được:

\(x+y+z=2\left(ax+by+cz\right)\)

Thay thích hợp ta được:

\(x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\Rightarrow1+c=\frac{x+y+z}{2z}\)

Tương tự ta có:

\(1+b=\frac{x+y+z}{2y};1+a=\frac{x+y+z}{2x}\)

Thay vào B ta có:

\(B=\sqrt{\frac{2}{\frac{x+y+z}{2x}}+\frac{2}{\frac{x+y+z}{2y}}+\frac{2}{\frac{x+y+z}{2z}}}\)

\(=\sqrt{\frac{4x}{x+y+z}+\frac{4y}{x+y+z}+\frac{4z}{x+y+z}=\frac{4\left(x+y+z\right)}{x+y+z}}\)

\(=\sqrt{4}=2\)

Đúng thì k, sai thì sửa, mai mình nộp cho cô rồi