Cho cá số a,b thỏa mãn \(2a^2+11ab-3b^2=0\) \(b\ne2a,b\ne-2a\). Tính giá trị biểu thức
T=\(\frac{a-2b}{2a-b}+\frac{2a-3b}{2a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lee Sin đi rừng thì tốt hơn Yasou
Nhưng chưa chắc nếu Yasou thông thạo 542 , lên level chiến trường như tui thì cân hết mọi con
Ta có \(\frac{1}{1+2x}+\frac{1}{1+2y}+\frac{1}{1+2z}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+2x}=1-\frac{1}{1+2y}+1-\frac{1}{1+2z}\\\frac{1}{1+2y}=1-\frac{1}{1+2x}+1-\frac{1}{1+2y}\\\frac{1}{1+2z}=1-\frac{1}{1+2x}+1-\frac{1}{1+2y}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+2x}=\frac{2y}{1+2y}+\frac{2z}{1+2z}\\\frac{1}{1+2y}=\frac{2x}{1+2x}+\frac{2y}{1+2y}\\\frac{1}{1+2z}=\frac{2x}{1+2x}+\frac{2y}{1+2y}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+2x}=\frac{2y}{1+2y}+\frac{2z}{1+2z}\ge2\sqrt{\frac{4yz}{\left(1+2y\right)\left(1+2z\right)}}\\\frac{1}{1+2y}=\frac{2x}{1+2x}+\frac{2z}{1+2z}\ge2\sqrt{\frac{4xz}{\left(1+2x\right)\left(1+2z\right)}}\\\frac{1}{1+2z}=\frac{2x}{1+2x}+\frac{2y}{1+2y}\ge2\sqrt{\frac{4xy}{\left(1+2x\right)\left(1+2y\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{\left(1+2x\right)\left(1+2y\right)\left(1+2z\right)}\ge8\sqrt{\frac{64x^2y^2z^2}{\left(1+2x\right)^2\left(1+2y\right)^2\left(1+2x\right)^2}}\)
\(\Rightarrow\frac{1}{\left(1+2x\right)\left(1+2y\right)\left(1+2z\right)}\ge\frac{64xyz}{\left(1+2x\right)\left(1+2y\right)\left(1+2z\right)}\)
\(\Rightarrow1\ge64xyz\)
\(\Rightarrow xyz\le\frac{1}{64}\)( đpcm )
Dấu ' = ' xảy ra khi \(x=y=z=\frac{1}{4}\)
tổng chiều dài , chiều rộng và hiệu 2 chiều là :
2400:20=120 m
chiều dài là :
120:2=60 m
chiều rộng là :
60-20=40 m
chu vi HCN là :
(60+40)x2=200 m
Cho x,y,z là các số thực dương và tích xyz=1. Chứng minh rằng:
1/(x+y+1) + 1/(y+z+1) + 1/(x+z+1) <= 1
đặt x=a3,y=b3,z=c3 => (abc)3=xyz=1=>abc=1, bdt được viết lại dưới dạng : sigma 1/a3+b3+1 </ 1
đến đây dùng bổ đề a3+b3 >/ ab(a+b)