Cho \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)+\left(x_3a-y_3b\right)+...+\left(x_ma-y_mb\right)\le0\left(m,n\inℕ^∗\right)\)
Chứng minh \(\frac{x_1+x_2+x_3+...+x_m}{y_1+y_2+y_3+...+y_m}=\frac{b}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gift -Quà tặng xin ra mắt tất cả các bạn!
Mong các bạn ủng hộ nhiệt tình!
Lady_Vu
Vì tổng 7 số bất kì là số thực dương nên trong 2017 số đã cho tồn tại 1 số thực dương
Tách riêng số thực dương đó ra ta còn 2016 sô
Chia 2016 số thành 288 nhóm , mỗi nhóm có 7 số
MÀ tổng 7 số bất kì là số thực dương nên mỗi nhóm trong số 288 nhóm đều dương
=> Tổng của 288 nhóm đều dương
Cộng thêm số dương lúc đầu tách được tổng của 2017 số ấy đều dương (Đpcm)
Kiến thức cơ bản :v
GT : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a+y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\le0\)
Có : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a-y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\ge0\)
\(\Rightarrow\)\(x_1a-y_1b=x_2a-y_2b=x_3a-y_3b=...=x_ma-y_mb=0\)
\(\Rightarrow\)\(x_1a=y_1b\)\(;\)\(x_2a=y_2b\)\(;\)\(x_3a=y_3b\)\(;\)\(...\)\(;\)\(x_ma=y_mb\)
\(\Rightarrow\)\(\frac{x_1}{y_2}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{b}{a}\) \(\left(1\right)\)
Tính chất dãy tỉ số bằng nhau :
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+x_3+...+x_m}{y_1+y_2+y_3+...+y_m}=\frac{b}{a}\) ( đpcm )
Phùng Minh Quân:tại sao dòng thứ hai lại đổi dấu \(\le\rightarrow\ge\)?