Giải phương trình:
\(\left(4x^3-x+3\right)^3-x^3=\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Đề bài chắc chắn đúng chứ bạn? Mình tưởng phải có điều kiện đặc biệt ràng buộc C thì tam giác MAB mới cân được chứ nhỉ?
Bài này nếu tinh ý một chút Đức sẽ nhận ra \(a-b+c=1+4m+1-4m-2=0\)
Suy ra pt trên có \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-c}{a}=4m+2\end{cases}}\)
Thay vào \(x_1^5+x_2^5=242\) \(\Leftrightarrow\) \(\left(-1\right)^5+\left(4m+2\right)^5=242\) \(\Leftrightarrow\) \(m=0.25\)
Giải:
Chia phương trình cho \(x^2\) ta có:
\(x^2+\frac{1}{x^2}+ax+\frac{b}{x}+2=0\left(1\right)\)
\(\left(1\right)-\left(ax+\frac{b}{x}\right)=x^2+\frac{1}{x^2}+2\Leftrightarrow\left(ax+\frac{b}{x}\right)^2=\left(x^2+\frac{1}{x^2}+2\right)^2\)
Áp dụng BĐT Bunhiacopski ta có:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)
Vậy \(\left(ax+\frac{b}{x}\right)^2\le\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\) nên \(\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\ge\left(x^2+\frac{1}{x^2}+2\right)^2\)
Đặt \(x^2+\frac{1}{x^2}=t\left(t\ge2\right)\) nên \(a^2+b^2\ge\frac{\left(t+2\right)^2}{t}=t+\frac{4}{t}+4\ge2\sqrt{t.\frac{4}{t}}+4=8\)
Dấu "=" xảy ra khi \(x^2+\frac{1}{x^2}=2\Leftrightarrow x=1\) và \(a=b\) sẽ tìm ra a
Người ta thường coi đại số là số học với bảy phép toán để nói rằng ngoài bốn phép toán rất thông dụng (Bạn biết là các phép toán nào rồi phải không?) nó còn thêm vào 3 phép toán nữa: Phép nâng lên lũy thừa và hai phép toán ngược.
\(pt\Leftrightarrow\left[\left(4x^3-x+3\right)^3-\frac{3}{4}\right]-\left(x^3+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left(4x^3-x+3-\sqrt[3]{\frac{3}{4}}\right)\left[\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]-\frac{4x^3+3}{4}=0\left(1\right)\)
Đặt \(A=\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2=0\)
Dễ chứng minh \(A\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2>\frac{1}{2}\)
\(\left(1\right)\Leftrightarrow\left[\left(4x^3+3\right)-\left(x+\sqrt[3]{\frac{3}{4}}\right)\right]A-\frac{4x^3+3}{4}=0\)
\(\Leftrightarrow\left[\left(4x^3+3\right)-\frac{x^3+\frac{3}{4}}{B}\right]A-\frac{4x^3+3}{4}=0\)
\(\Leftrightarrow\left(4x^3+3\right)\left(A-\frac{A}{4B}-\frac{1}{4}\right)=0\)
Với \(B=x^2-\sqrt[3]{\frac{3}{4}}x+\left(\sqrt[3]{\frac{3}{4}}\right)^2\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2\Rightarrow4B>2\)
Ta chứng minh \(A-\frac{A}{4B}-\frac{1}{4}>0\)
\(\Leftrightarrow A\cdot\frac{4B-1}{4B}-\frac{1}{4}>0\). Do \(4B>2\Rightarrow\frac{4B-1}{4B}>\frac{1}{2};A>\frac{1}{2}\)
Do đó pt có nghiệm duy nhất là \(4x^3+3=0\Leftrightarrow x=-\sqrt[3]{\frac{3}{4}}\)