a ,b ,c >0 a+b+c=3
cmr: P=\(\frac{3+a^2}{b+c
}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\le6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I M E x y
a) Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên AE là phân giác góc BAC
Khi đó AE và AD đều là phân giác trong của góc BAC
=> 3 điểm A,E,D thẳng hàng
b) Có: ACB+BCx =180
=> 1/2 ACB +1/2 BCx =90
=> DCB + BCE =90
=> DCE =90
Tương tự : DBE =90
Trong tứ giác BECD CÓ DBE +DCE =90+90=180
=> TỨ giác BECD nội tiếp
c) theo câu b thì tứ giác BECD nội tiếp nên
DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)
Xét tam giác DIC và tam giác BIE có :
DCB=DEB (cmt)
DIC= BIE ( 2 góc đối đỉnh)
=> tam giác DIC đồng dạng với tam giác BIE
=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)
=> BI *IC= ID*IE
mình ghi lại câu a nhé
Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A
=> AE là phân giác góc A
Vì D là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC
=> D thuộc đường phân giác góc A
=>AE,AD nhau
=> A,E,D thẳng hàng
Ta có \(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(a+b\le2\sqrt{2}\) \(\Rightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Hay \(P=\frac{1}{a}+\frac{1}{b}\ge\sqrt{2}\)
Dấu "=" xảy ra <=> \(a=b=\sqrt{2}\)
Vậy \(P_{min}=\sqrt{2}\) tại \(a=b=\sqrt{2}\)
\(x-\sqrt{x^2-2x+1}\)
= \(x-\sqrt{\left(x-1\right)^2}\)
= \(x-x+1\)
= \(1\)
Vậy: \(x-\sqrt{x^2-2x+1}=1\)
\(P=\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge6\)
\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{a+c}+\frac{b^2}{a+c}+\frac{3}{a+b}+\frac{c^2}{a+b}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Lại có: \(\frac{3}{b+c}+\frac{3}{a+c}+\frac{3}{a+b}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\)
\(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\). Lại theo BĐT Nesbitt ta có:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\forall\)a,b,c dương
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3=\frac{9}{2}\)
\(\Rightarrow P=Σ\frac{3}{b+c}+Σ\frac{a^2}{b+c}\ge\frac{3}{2}+\frac{9}{2}=6\)
Đẳng thức xảy ra khi \(a=b=c=1\)
hình như >=6 mới đúng giờ mạng đang nghèn mai giải cho