K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

\(P=\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge6\)

\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{a+c}+\frac{b^2}{a+c}+\frac{3}{a+b}+\frac{c^2}{a+b}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Lại có: \(\frac{3}{b+c}+\frac{3}{a+c}+\frac{3}{a+b}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\)

\(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\). Lại theo BĐT Nesbitt ta có: 

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\forall\)a,b,c dương 

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3=\frac{9}{2}\)

\(\Rightarrow P=Σ\frac{3}{b+c}+Σ\frac{a^2}{b+c}\ge\frac{3}{2}+\frac{9}{2}=6\)

Đẳng thức xảy ra khi \(a=b=c=1\)

21 tháng 4 2017

hình như >=6 mới đúng giờ mạng đang nghèn mai giải cho

21 tháng 4 2017

x2 - 3x - 33333 + 2 = 0

<=> x2 - 3x - 33331 = 0

<=> x2 - 3x + 1/36 - 1199917/36 = 0

<=> (x - 1/6)2 = 1199917/36

<=> x - 1/6 = 182,5678717

<=> x = 182,7345384

Hông bik đúng hay ko mà số to chà bá =))

21 tháng 4 2017

lộn có 1 số 3 à

7 tháng 5 2019

A B C D I M E x y

a)   Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên  AE là phân giác góc BAC

Khi đó AE và AD đều là phân giác trong của góc BAC

=> 3 điểm A,E,D thẳng hàng

b)   Có:       ACB+BCx   =180

           => 1/2 ACB  +1/2  BCx =90

           =>  DCB  +   BCE  =90

           =>  DCE                =90

Tương tự  : DBE    =90

Trong tứ giác  BECD   CÓ   DBE +DCE  =90+90=180 

=> TỨ giác BECD nội tiếp

c) theo câu b thì tứ giác BECD nội tiếp nên

  DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)

Xét tam giác DIC và tam giác BIE có :

    DCB=DEB (cmt)

   DIC= BIE ( 2 góc đối đỉnh)

=> tam giác DIC đồng dạng với tam giác BIE

=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)

 => BI *IC= ID*IE

            

9 tháng 5 2019

mình ghi lại câu a nhé

Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A 

=> AE là  phân giác góc A

Vì D  là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC

=> D thuộc đường phân giác góc A

=>AE,AD nhau

=> A,E,D thẳng hàng

21 tháng 4 2017

số 9 nha chúc bạn học giỏi nhớ k cho mình nhé

27 tháng 4 2017

Ta có \(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(a+b\le2\sqrt{2}\) \(\Rightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Hay \(P=\frac{1}{a}+\frac{1}{b}\ge\sqrt{2}\)

Dấu "=" xảy ra <=> \(a=b=\sqrt{2}\)

Vậy \(P_{min}=\sqrt{2}\) tại \(a=b=\sqrt{2}\)

\(x-\sqrt{x^2-2x+1}\)

\(x-\sqrt{\left(x-1\right)^2}\)

\(x-x+1\)

\(1\)

Vậy: \(x-\sqrt{x^2-2x+1}=1\)

21 tháng 4 2017

Bạn ơi sin gì đó bạn ?