Vớ giá trị nào của m thì phương trình x-2=2m+4 (ẩn x ) có nghiệm dương?
A.m<-3
B.m>-3
C.m>3
D.m<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
suy ra: \(\Delta ABC~\Delta HBA\) (g.g)
b) Xét \(\Delta AIH\)và \(\Delta AHB\)có:
\(\widehat{AIH}=\widehat{AHB}=90^0\)
\(\widehat{IAH}\) chung
suy ra: \(\Delta AIH~\Delta AHB\) (g.g)
\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AI.AB=AH^2\) (1)
Xét \(\Delta AHK\)và \(\Delta ACH\)có:
\(\widehat{HAK}\)chung
\(\widehat{AKH}=\widehat{AHC}=90^0\)
suy ra: \(\Delta AHK~\Delta ACH\) (g.g)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)
\(\Rightarrow\)\(AK.AC=AH^2\) (2)
Từ (1) và (2) suy ra: \(AI.AB=AK.AC\)
c) \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2
Tứ giác \(HIAK\)có: \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)
\(\Rightarrow\)\(HIAK\)là hình chữ nhật
\(\Rightarrow\)\(AH=IK=4\)cm
Ta có: \(AI.AB=AK.AC\) (câu b)
\(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)
Xét \(\Delta AIK\)và \(\Delta ACB\)có:
\(\widehat{IAK}\)chung
\(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)
suy ra: \(\Delta AIK~\Delta ACB\) (c.g.c)
\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)
\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2
Từ \(a^2+b^2+c^2=1\) , ta có thể suy ra rằng \(\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\)
Ta Có \(a^2-a^3+b^2-b^3+c^2-c^3=0\)
<=> \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Nhận thấy \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Nên suy ra \(\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\\c\left(1-c\right)=0\end{cases}}\) Vậy tồn tại trong ba số a,b,c có một số bằng 1
Kết hợp Với \(a^2+b^2+c^2=1\)
Suy ra hai số còn lại bằng 0
Vậy \(a+b^2+c^3=1\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)
\(\Leftrightarrow a.\left(a^2-1\right)+b.\left(b^2-1\right)+c.\left(c^2-1\right)=0\)
Vì \(a.\left(a^2-1\right)\ge0;b.\left(b^2-1\right)\ge0;c.\left(c^2-1\right)\ge0\)
\(\Rightarrow a.\left(a^2-1\right)=0;b.\left(b^2-1\right)=0;c.\left(c^2-1\right)=0\)
\(\hept{\begin{cases}a.\left(a^2-1\right)=0\\b.\left(b^2-1\right)=0\\c.\left(c^2-1\right)=0\end{cases}\Rightarrow\hept{\begin{cases}a=0;\pm1\\b=0;\pm1\\c=0;\pm1\end{cases}}}\)
rồi bn tings bốt hộ mk
mk mới lớp 6 lên cứ làm bừa
mk giải nhì toán leenbuafw thôi
Cậu tự vẽ hình nhá
a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A
Tam giác ADH có AB là đường cao đồng thời là phân giác
=> góc DAB = góc HAB
Tương tự với tam giác AHE => góc HAC = góc EAC
Ta có :
góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180
=> D,A,E thẳng hàng
Nhận thấy
Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)
Tương tự , ta cũng có : góc BHA = góc BDA = 900 (2)
Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)
b) Ta có : tam giác BHA đồng dạng với tam giác AHC
Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)
Mà BH = BD , HC = CE
=> \(AH^2=BD.CE\)
<=> \(4AH^2=4BD.CE\)
<=> \(\left(2AH\right)^2=4BD.CE\) (Do AD = AH = AE)
<=> \(DE^2=4BD.CE\)
b) ta có: AE/AF = AB/AC ( câu a )
=) AE×AC/AF= AB (1)
Xét tam giác ADB và tam giác CFB có:
Góc ADB= góc CFB
Chung góc ABC
=) Tam giác ADB đồng dạng với tam giác CFB (g-g)
=) BD/AF= AB/AC
(=) BD×BC/BF= AB (2)
Từ (1) và (2) =) cái đề ( đpcm )
hình chữ nhật có diện tích 36 cm2, chiều rộng là 3 cm.Hỏi hình chữ nhât đó có chiều dai gấp mấy lần chiều rộng?
Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé
Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)
Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)
Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)
<=> \(ab\le1\)
<=> \(1-ab\ge0\)
Suy ra P = 2018 - 2018ab = 2018(1 - ab) \(\ge0\)
\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\) với \(a,b\in R\)
nếu \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\) thì \(P=2018>0\)
nếu \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\) thì xảy ra 2 trường hợp như sau
\(TH1\)\(a,b\) trái dấu \(\Rightarrow P>0\)
\(TH2\) \(a,b\) cùng dấu
vì \(2.a^{2018}.b^{2018}>0\forall a,b\)
\(\Rightarrow a^{2017}+b^{2017}>0\) để 2 đẳng thức tồn tại dấu \("="\)
\(\Rightarrow a,b>0\) ( cùng dương)
có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)
\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)
\(\Rightarrow ab\le1\)
\(\Rightarrow2018-2018ab>2018-2018=0\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
vậy \(P\) luôn không âm
Ta có :
\(2^x.3^y-1\equiv5\left(mod6\right)\)
\(7^z\equiv1\left(mod6\right)\)
Suy ra Phương trình trên vô nghiệm
Với a + b + c = 0 thì ta có hằng đẳng thức sau : \(a^3+b^3+c^3=3abc\) (Cậu tự chứng minh nha)
Ta có : \(3abc\left(a^2+b^2+c^2\right)=\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)\)
\(=a^5+b^5+c^5+a^3\left(b^2+c^2\right)+b^3\left(c^2+a^2\right)+c^3\left(a^2+b^2\right)\)
Ta lại có : \(\hept{\begin{cases}b+c=-a\\c+a=-b\\a+b=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2+c^2=\left(b+c\right)^2-2bc=a^2-2bc\\....\\....\end{cases}}\)
Nên \(a^5+b^5+c^5+a^3\left(b^2+c^2\right)+b^3\left(c^2+a^2\right)+c^3\left(a^2+b^2\right)\)
\(=a^5+b^5+c^5+\left(a^2-2bc\right)\left(b^2+c^2\right)+\left(b^2-2ca\right)\left(c^2+a^2\right)+\left(c^2-2ab\right)\left(a^2+b^2\right)\)
\(=2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow3abc\left(a^2+b^2+c^2\right)=2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow5abc\left(a^2+b^2+c^2\right)=2\left(a^5+b^5+c^5\right)\)