Cho \(a,b,c>0\)và \(abc=1\). CMR: \(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho \(a,b,c>0\) và \(abc=1\). Chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)
Cách 1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2c+b^2a+c^2b}{abc}\ge\frac{\frac{\left(ab+bc+ca\right)^2}{a+b+c}}{abc}\ge a+b+c\)
Cách 2: Áp dụng BĐT AM-GM ta có:
\(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}\ge3a\)
Tương tự ta cũng có \(\frac{2b}{c}+\frac{c}{a}\ge3b;\frac{2c}{a}+\frac{a}{b}\ge3c\)
Cộng theo vế và rút gọn ta có ĐPCM
Cách 3: Đặt \(x=\sqrt[9]{\frac{ab^4}{c^2}};y=\sqrt[9]{\frac{ca^4}{b^2}};z=\sqrt[9]{\frac{bc^4}{a^2}}\)
\(\Rightarrow a=xy^2;b=xz^2;c=yz^2\forall xyz\le1\)
Áp dụng BĐT Rearrangement ta có:
\(Σ\frac{a}{b}=Σ\frac{x^2}{yz}\ge xyzΣ\frac{x^2}{yz}=Σx^3\geΣxy^2=Σa\)
ta có:
\(ab< =\frac{a^2+b^2}{2}=\frac{1}{2}\)
\(\frac{\left(a+b\right)^2}{2}< =a^2+b^2=1\)
=>\(2\left(a+b\right)< =2\sqrt{2}\)
=>\(ab+2\left(a+b\right)< =\frac{1}{2}+2\sqrt{2}=\frac{1+4\sqrt{2}}{2}\)
=>Max ab+2(a+b)=\(\frac{1+4\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2+b^2=1\\a=b\end{cases}< =>a=b=\frac{1}{\sqrt{2}}}\)
gio thoi thoang thoang huong thum thum
ai danh ram ma huong thom the
a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).
b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)
Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng
Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK
Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M) (2)
Từ (1) và (2) suy ra IM = KA (đpcm).
đề sai thì phải \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2\)2
<=> \(\left(2x^2+x-4+2x-1\right)\)\(\left(2x^2+x-4-2x+1\right)\)( HĐT 3)
<=> \(\orbr{\begin{cases}2x^2+3x-5=0
\\2x^2-x-3=0\end{cases}}
\)giải ra là đc ng
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2\left(b+c\right)}+\frac{b+c}{4}\ge2\sqrt{\frac{1}{a^2\left(b+c\right)}\cdot\frac{b+c}{4}}=2\cdot\frac{1}{2a}=\frac{1}{a}\)
Tuong tu cho 2 BDT con lai ta cung co
\(\frac{1}{b^2\left(a+c\right)}+\frac{a+c}{4}\ge\frac{1}{b};\frac{1}{c^2\left(a+b\right)}+\frac{a+b}{4}\ge\frac{1}{c}\)
Cong theo ve cac BDT tren ta co
\(VT+\frac{2\left(a+b+c\right)}{4}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow VT+\frac{a+b+c}{2}\ge3\sqrt[3]{\frac{1}{abc}}=3\left(abc=1\right)\)
\(\Rightarrow VT+\frac{3\sqrt[3]{abc}}{2}\ge3\Rightarrow VT+\frac{3}{2}\ge3\Rightarrow VT\ge\frac{3}{2}\)
Dang thuc xay ra khi \(a=b=c=1\)