giúp mik nhá cho các số dương a ,b thỏa mãn \(\sqrt{a}+\sqrt{b}\ge\)2
chứng minh \(\sqrt[3]{a}+\sqrt[3]{b}\ge\) a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu này vô google cũng có nè -- mik cho bạn cái lik bạn gõ nó ra :
https://diendantoanhoc.net/topic/84873-leftbeginmatrix-2x2xy-y2-5xy20x2y2xy-40-endmatrixright/
Đặt cho dễ nhìn.
Đặt: \(\sqrt{a}=x\Rightarrow a=x^2;a\sqrt{a}=x^3\)
\(\sqrt{b}=y\Rightarrow b=y^2;b\sqrt{b}=y^3\)
\(\Leftrightarrow\frac{x^3+y^3}{x+y}-xy=\left(x-y\right)^2\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}-xy=x^2-2xy+y^2\)
\(\Leftrightarrow x^2-xy+y^2-xy=x^2-2xy+y^2\)
\(\Leftrightarrow x^2-2xy+y^2=x^2-2xy+y^2\)
\(\Rightarrowđpcm\)
Bạn xem lại đề.
Ta thử \(\hept{\begin{cases}a=4\\b=4\end{cases}}\) thì ta có:
\(\sqrt{4}+\sqrt{4}=2+2=4>2\)
Nhưng \(\sqrt[3]{4}+\sqrt[3]{4}\approx3,1748< 4+4=8\)