Tìm x,y,z biết
x(x+y+z)=-12;y(x+y+z)=18;z(x+y+z)=30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\) ( Theo định lí Py-ta-go)
Mà AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)
S = 22 + 42 + 62 + ... + 202
S = 22 ( 12 + 22 + 32 + ... + 102 )
Vì 12 + 22 + 32 + ... + 102 = 385
=> S = 22 . 385
S = 4 . 385
S = 1540
Vậy S = 1540
Vì 2^2=2^2.1^2,4^2=2^2.2^2,....20^2=2^2.10^2
Suy ra S=2^2.(1^2+2^2+...+10^2)
Mà theo bài ra,phần dấu trong ngoặc bằng 385
Suy ra S=2^2.385=4.385=1540
Vậy S có giá trị bằng 1540
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x-1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\\left(x-7\right)^{10}=\left(\pm1\right)^{10}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\x-7=1\\x-7=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\x=8\\x=6\end{cases}}\)
P/S: 2 dòng cuối bn thay \(\hept{\begin{cases}\\\\\end{cases}}\)thành \(\orbr{\begin{cases}\\\end{cases}}\)nha
Ta có: x(x + y + x) = -12
y(x + y + z) = 18
z(x + y + z) = 30
cộng vế với vế, ta được :
x(x + y + z) + y(x + y + z) + z(x + y + z) = -12 + 18 + 30
=> (x + y + z)(x + y + z) = 36
=> (x + y + z)2 = 62
=> (x + y + z) = \(\pm\)6
Với x + y + z = 6
=> x .6 = -12
=> x = -12 : 6
=> x = -2
còn lại tương tự