K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

Ta có: \(12\ge\left(a+b\right)^3+4ab\ge a^3+b^3+3ab\left(a+b\right)+4ab\)

\(\ge4ab\left(a+b\right)+4ab\ge8\sqrt{a^3b^3}+4ab\)

\(\Leftrightarrow3\ge2\sqrt{a^3b^3}+ab\Leftrightarrow\left(\sqrt{ab}-1\right)\left(2ab+2\sqrt{ab}+3\right)\le0\)

\(\Leftrightarrow ab\le1\). Ta có BĐT \(\frac{1}{1+a}+\frac{1}{1+b}\le\frac{2}{1+\sqrt{ab}}\)

\(\Leftrightarrow\frac{\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\le0\) đúng với \(ab\le1\)

Áp dụng BĐT vừa c/m trên ta có:

\(\frac{1}{1+a}+\frac{1}{1+b}+2015ab\le\frac{2}{1+\sqrt{ab}}+2015ab\)

Cần chứng minh \(\frac{2}{1+\sqrt{ab}}+2015ab\le2016\)

\(\Leftrightarrow2015\sqrt{ab}\left(ab-1\right)+\sqrt{ab}\left(\sqrt{ab}-1\right)+2014ab\le2014\) ( luôn đúng do \(ab\le1\))

Đẳng thức xảy ra khi \(a=b=1\)

27 tháng 5 2017

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)

\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=1\)

30 tháng 8 2018

Từ  \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)

\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) 

Đẳng thức xảy ra khi \(a=b=c=1\)

27 tháng 5 2017

5 - 2 căn 6

căn 2

27 tháng 5 2017

1 và 3,561782068

27 tháng 5 2017

ĐỒ ĐIÊN HẾT CÁI ĐỂ VIẾT RỒI À ?

27 tháng 5 2017

Bị làm sao vậy?Chúc người ta ngủ ngon rồi lại kêu giải toán?Bị bệnh gì thế hả bạn?

27 tháng 5 2017

đội 2  :  2,4 gio

đội 1 :  12 giờ

27 tháng 5 2017

bạn giải chi tiết đi cho mình thao khảo luôn với

27 tháng 5 2017

ko pick mik mới lớp 4

27 tháng 5 2017

mình mới lớp 6 thôi

27 tháng 5 2017

dễ bạn nào muốn biết chỉ cần 3 cái là xong

yên tâm tớ không câu đâu

câu tớ là con chó

27 tháng 5 2017

theo cong thuc  x1 x2

27 tháng 5 2017

ĐKXĐ x khác 1

Khi x khác 1 thì căn x -1 luôn luôn lớn hơn 0

Vậy GTNN = 0 khi x= 0