Cho \(x,y,z>0\)và \(x+y+z\le xyz\). Tìm giá trị lớn nhất của biểu thức :
\(P=\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}\)
\(A=2\sqrt{4.2}-3\sqrt{9.2}+4\sqrt{64.2}-5\sqrt{16.2}\)
\(A=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(A=7\sqrt{2}\)
Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)
Xét hai số a, b dương sao cho \(a+b=1\)
Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)
\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)
Áp dụng vào bài toán ta được
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)
\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)
\(=1+1+...+1=1008\)
Câu 2/
\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)
Ta có:
\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)
Thế ngược lại (1) giải tiếp sẽ ra nghiệm.
Điều kiện: \(\hept{\begin{cases}x\le2\\x\ge\frac{2}{3}\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3a^2+b^2=4\\a^2+b^2=2x\end{cases}}\) thế vào PT bao đầu thì ta có hệ
\(\Rightarrow\hept{\begin{cases}3a^2+b^2=4\\\left(a^2+b^2+2\right)a+\left(a^2+b^2-2\right)b=4\end{cases}}\)
\(\Rightarrow3a^2+b^2-\left(\left(a^2+b^2+2\right)a+\left(a^2+b^2-2\right)b\right)=0\)
\(\Leftrightarrow\left(a+b-2\right)\left(a^2+b^2+b-a\right)=0\)
Dễ thấy với \(\frac{2}{3}\le x\le2\) thì \(a^2+b^2+b-a>0\)
\(\Rightarrow a+b=2\)
\(\Rightarrow\sqrt{2-x}+\sqrt{3x-2}=2\)
(Bình phương 2 vế rút gọn ta được)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x-2\right)}=2-x\)
\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x-2}-\sqrt{2-x}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}=0\\\sqrt{2-x}=\sqrt{3x-2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\x=1\end{cases}}\)
\(\left(x+1\right)\sqrt{2-x}+\left(x-1\right)\sqrt{3x-2}=2\)
Ta có :\(x\in\orbr{\frac{2}{3};\infty}\)
\(\left(x+1\right)\sqrt{2}-x+\left(x-1\right)\sqrt{3x-2}=x\sqrt{3x-2}-\sqrt{3x-2}+\sqrt{2x}-x+\sqrt{2}\)
\(x\sqrt{3x-2}-\sqrt{3x-2}+\sqrt{2x}-x+\sqrt{2}=2\)
\(x\sqrt{3x-2}-\sqrt{3x-2}+\sqrt{2x}-x+\sqrt{2}-2=0\)
\(\left(x-1\right)\sqrt{3x-2}+\left(\sqrt{2}-1\right)x+\sqrt{2}-2=0\)
Không tồn tại nghiệm số thực .
\(x\in\theta\)
từ giả thiết ta suy ra \(\sqrt[3]{x^2y^2z^2}\ge3\)
lại có x2 + 2yz = x2 + yz + yz \(\ge\)3\(\sqrt[3]{x^2y^2z^2}\)\(\ge\)9
nên \(\frac{1}{x^2+2yz}\le\frac{1}{9}\)
tương tự với 2 số còn lại nên ta được P \(\le\frac{1}{3}\)
dấu "=" xảy ra khi x = y = z = \(\sqrt{3}\)