giúp mình với ạ!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh \(\Leftrightarrow\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\le1\)(do \(\sqrt{ab}>0\)nên khi nhân 2 vế của BĐT với \(\frac{1}{\sqrt{ab}}\) chiều của BĐT không thay đổi)
\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)\(\Leftrightarrow\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le1\)
\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)(*)
Áp dụng BĐT Cô-si cho hai số dương \(\frac{c}{b}\)và \(1-\frac{c}{a}\), ta có: \(\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}\right)=\frac{c}{2b}+\frac{1}{2}-\frac{c}{2a}\)
Tương tự, ta có: \(\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le\frac{c}{2a}+\frac{1}{2}-\frac{c}{2b}\)
\(\Rightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le\frac{c}{2b}+\frac{1}{2}-\frac{c}{2a}+\frac{c}{2a}+\frac{1}{2}-\frac{c}{2b}=1\)
\(\Rightarrow\)(*) luôn đúng
Vậy ta có đpcm.
uầy hello người AE bản sao : bài này :
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
TL
Bn tham khảo
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).
Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)
Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3
Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.
Vậy DE là tiếp tuyến của đường tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED=4cm
Hok tốt
Gọi E và F lần lượt là tiếp điểm của AC, BC với (I).
Đặt \(AD=AE=a;BD=BF=b;CE=CF=c\)
Vì \(CA.CB=2DA.DB\left(gt\right)\)\(\Rightarrow\left(c+a\right)\left(c+b\right)=2ab\Rightarrow c^2+bc+ac+ab=2ab\Rightarrow c^2+bc+ac=ab\)
\(\Rightarrow2c^2+2bc+2ac=2ab\Rightarrow c^2+2bc+b^2+c^2+2ac+a^2=a^2+2ab+b^2\)
\(\Rightarrow\left(c+b\right)^2+\left(c+a\right)^2=\left(a+b\right)^2\Rightarrow BC^2+AC^2=AB^2\)
\(\Rightarrow\Delta ABC\)vuông tại C theo định lí Pytago đảo.
Vậy ta có đpcm.