K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Viết lại đề mình sẽ giải cho bạn <3 

8 tháng 6 2017

Viết lại đề mình sẽ giải cho bạn <3

8 tháng 6 2017

bạn đặt \(\sqrt{x}=a\) , a> 0 

Thay \(\sqrt{x}=a\)  vô  biểu thức => rút gọn ra => thay trở lại  

8 tháng 6 2017

giải chi tiết giúp mình đc không ạ?

13 tháng 6 2017

bạn có lời giải chưa cho mình xin gợi ý thôi cx được..

13 tháng 6 2017

Đề thi hôm trước đây mà. Có câu này mình giải không chắc lắm

Giải PT bậc 2 theo z

Mình giải được nghiệm 1, 0, 1

Nhưng mình cũng không chắc chắn lắm.

 \(P=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\\\)

Sau đó áp dung AM-GM và Cauchy-Schwartz

8 tháng 6 2017

Lật ra phần sau sách bài tập í

8 tháng 6 2017

Nói như bạn thif tôi cũng k cần hỏi làm gì cho mất công 

8 tháng 6 2017

Đặt \(A=3x^2+y^2+2xy+4x\)

\(\Leftrightarrow A=y^2+2xy+x^2+2x^2+4x+2-2\)

\(\Leftrightarrow A=\left(x+y\right)^2+2\left(x+1\right)^2-2\)

       Vì \(\left(x+y\right)^2\ge0;2\left(x+1\right)^2\ge0\)

              \(\Rightarrow\left(x+y\right)^2+2\left(x+1\right)^2-2\ge-2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y=0\\x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

        Vậy Min A=-2 khi \(y=1;x=-1\)

8 tháng 6 2017

\(3x^2+y^2+2xy+4x\)

\(=x^2+2xy+y^2+2x^2+4x+2-2\)

\(=\left(x+y\right)^2+2.\left(x+1\right)^2-2\ge-2\)

Dấu bằng xảy ra khi

\(\hept{\begin{cases}x=-y\\x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-1\end{cases}}}\)

Vậy Min \(3x^2+y^2+2xy+4x\)=2 khi x=-1;y=1