CMR:nếu các chữ số a,b,c thỏa mãn điều kiện \(\overline{ab}:\overline{cd}=a:c\)thì \(\overline{abbb}:\overline{bbbc}=a:c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\left(x-\frac{1}{x}\right)^2\ge0\)
\(\Leftrightarrow x^2-2+\frac{1}{x^2}\ge0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}\ge2\)
C/m tt \(y^2+\frac{1}{y^2}\ge2\)
Cộng lại ta được \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge4\)
Dấu "=" khi \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)
3b-b=2b=32010-3
b=32010-3 /2
ta có
\(3^4\equiv1\left(mod10\right)\)
=>\(\left(3^4\right)^{25}\equiv1\left(mod10\right)\)
=>\(3^{100}-3\equiv-2\left(mod10\right)\)
=>(3^100-3)/2 =-1(mod10)
=>tận cùng của b là 9
a)\(3B=3^2+3^3+3^4+..+3^{2010}\)
\(3B-B=2B=3^{2010}-3\Rightarrow B=\frac{3^{2010}-3}{2}\)
b)Xét chữ số tận cùng của \(3^{2010}=3^{2008}.3^2=3^{4k}.3^2=\left(...1\right).9=\left(...9\right)\)
Suy ra \(2B=3^{2010}-3=\left(...9\right)-3=\left(...6\right)\)
Suy ra \(B=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy ...
\(\frac{3}{x}+\frac{2}{y}=3\\ \Leftrightarrow3y+2x=3xy\\ \Leftrightarrow3y-3xy+2x=0\)
\(3y\left(1-x\right)-2\left(1-x\right)+2=0\\ \left(3y-2\right)\left(1-x\right)=-2\)
Vì x, y thuộc Z nên ta tách -2 = -1.2
=2.(-1)
= 1. (-2)
= -2.1
Lần lượt xét các cặp x,y theo những số đã tách, ta thu đc kết quả.
Chúc bạn học tốt! ^.^
\(8\cdot2^n+2^{n+1}\)
\(=2^n\left(8+2\right)=10\cdot2^n\)luôn có tận cùng là chữ số 0