K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)

\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)

\(B=1x^4y^5\)

Hệ số: 1

Bậc: 9

Chưa định hình phần b) nó là như nào

17 tháng 3 2019

4xy-6y+4x=16

y(4x-6)+4x=16

=> y(4x-6)+4x-6=10

(4x-6)(y+1)=10

=> 4x-6, y+1 là ước của 10.

Rồi bạn lập bảng là đc

15 tháng 9 2019

Ta cần chứng minh: \(a^{2n}+b^{2n}\le c^{2n}\)(1)

* Với n = 1 thì \(a^2+b^2=c^2\)(Đúng với định lý Py - ta - go)

* Với n = 2 thì \(a^4+b^4=a^4+a^2b^2+b^4+a^2b^2-2a^2b^2\)

\(=a^2\left(a^2+b^2\right)+b^2\left(a^2+b^2\right)-2a^2b^2\)

\(=\left(a^2+b^2\right)^2-2a^2b^2\le\left(c^2\right)^2=c^4\)(Đúng với (1))

Giả sử (1) đúng với n, tức là \(a^{2n}+b^{2n}\le c^{2n}\)

Ta cần chứng minh (1) đúng với n + 1

\(\Rightarrow a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}\)

\(=a^{2n}.a^2+b^{2n}.b^2\)

\(=a^{2n}.a^2+a^2.b^{2n}+b^{2n}.b^2+a^{2n}.b^2-a^2.b^{2n}-a^{2n}.b^2\)

\(=a^2\left(a^{2n}+b^{2n}\right)+b^2\left(a^{2n}+b^{2n}\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(=\left(a^2+b^2\right)\left(a^{2n}+b^{2n}\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(\le c^2.c^{2n}-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}\)(đúng)

Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)

22 tháng 6 2019

Em tham khảo ở link: Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

16 tháng 3 2019

\(=\)\(\frac{2^{12}.5^7+2^{12}.5^6}{2^{15}.5^6+2^{12}.5^6}\)

\(=\)\(\frac{2^{12}.5^6.\left(1+5\right)}{2^{12}.5^6.\left(2^3+1\right)}\)

\(=\)\(\frac{6}{9}\)\(=\)\(\frac{2}{3}\)

chúc học tốt

16 tháng 3 2019

+) Xét Ix-1I + Ix-5I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-1|+|x-5|\ge|x-1-x+5|=4\)

Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0

+) Xét Ix-2I + Ix-4I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-2|+|x-4|\ge|x-2-x+4|=2\)

Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0

+) Xét Ix-3I

Vì Ix-3I\(\ge\)

Dấu "=' xảy ra khi x-3=0 hay x=3

Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025

Dấu"=" xảy ra khi x=3

Vậy gtnn của A là 2025 tại x=3

16 tháng 3 2019

khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x

16 tháng 3 2019

Bạn tự vẽ hình nha.mk ko bt vẽ trên olm

a) Xét tg AMB và tg DMC có:AM=MD (gt)

MB=MC (gt)

AMB=DMC (2 góc đđ)

nên tg AMB= tg DMC  suy ra AB=DC ( cặp cạnh tương ứng),BAM=CDM(cặp góc tương ứng)

b)Xét tg BEM và tg CFM có: BEM=CFM= 90

                                          BM=MC(gt)

                                          EMB=FMC(2 góc đđ)

nên tg BEM= tg CFM(ch-gn) suy ra ME = MF mà M,E,F cùng thược AD 

Suy ra M là trung điểm của EF

c) Xét tg BMD và tg CMA có: BM=Cm (gt)

                                           MD=MA (gt)

                                           BMD=CMA (2 góc đđ)

nên tg BMD =tg CMA hay MDB=MAC(cặp góc tương ứng)

                                mà BAM=CDM(cmt)

nên BAM+MAC=MDB+CDM

hay BAC=CDB

16 tháng 3 2019

Bài 39:

a) Thu gọn P(x) = 2 + 9x2 – 4x3 – 2x + 6x5

P(x) = 2 + 5x2 – 3x3 + 4x2 –2x – x3 + 6x5

P(x) = 2 + (5x2+ 4x2) + (– 3x3– x3) – 2x + 6x5

P(x) = 2 + 9x2 – 4x3– 2x + 6x5

Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến, ta có

P(x) = 6x5 – 4x3 + 9x2 – 2x + 2

b) Hệ số lũy thừa bậc 5 là 6

Hệ số lũy thừa bậc 3 là – 4

Hệ số lũy thừa bậc 2 là 9

Hệ số lũy thừa bậc 1 là – 2

Hệ số lũy thừa bậc 0 là 2

16 tháng 3 2019

Bài 40: 

a) Thu gọn Q(x) = 4x2 + 2x4 + 4x3 – 5x6 – 4x – 1

Q(x) = x2 + 2x4 + 4x3 – 5x6 + 3x2 – 4x –1

Q(x) = (x2+ 3x2) + 2x4 + 4x3 – 5x6– 4x –1

Q(x) = 4x2 + 2x4 + 4x3 – 5x6 – 4x –1

Sắp xếp các hạng tử của Q(x) theo lũy thừa giảm của biến, ta có

Q(x) = – 5x6 + 2x4 + 4x3 + 4x2 – 4x –1

b) Hệ số lũy thừa bậc 6 là – 5

Hệ số lũy thừa bậc 4 là 2

Hệ số lũy thừa bậc 3 là 4

Hệ số lũy thừa bậc 2 là 4

Hệ số lũy thừa bậc 1 là –4

Hệ số lũy thừa bậc 0 là –1