Bài 1:
Cho dãy số xác định bởi: \(\hept{\begin{cases}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{U_n}}\end{cases}}\) Với n là số tự nhiên khác 0. Tính U2003.
Bài 2: Tính giá trị biểu thức A biết: \(A=\sqrt{2007+\sqrt{2007+...+\sqrt{2007}}}\) (n dấu căn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử sqrt{7} là số hữu tỉ => sqrt{7}=mnmn , (m,n)=1 => 7=m2n2m2n2=> m^2=7n^2 mà (m,n)=1, 7 là SNT =>m⋮⋮ 7
Đặt m=7k thay vào thấy n cũng chia hết cho 7 => vô lý
mik chỉ mới lớp 5 nên ko doãi được
sory nhiều nha
cok ai kk pc thì cho phương 1 tk nha
cm ơn nhiều >_<
Ta có:
\(\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(c-a\right)^2\left(a-b\right)^2\)
\(=\left(a^2+b^2+c^2-ab-bc-ca\right)^2\)
\(\Rightarrow A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(c-a\right)^2\left(a-b\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Vì \(a,b,c\in Q\)
\(\Rightarrow A\in Q\)
Đặt \(a-b=x,b-c=y,c-a=z\). \(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=A\)
Khi đó A bằng giá trị tuyệt đối của \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ
Nếu theo như biểu thức bạn cho thì 2 số hạng đầu không liên quan đến nhau, 1 bên là số lớn trong căn, 1 bên là số nhỏ trong căn, vì thế phải sửa lại
Rút gọn biểu thức
\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2018}}.\)
Bây giờ chúng ta chứng minh bài toán phụ sau:
Chứng minh:
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Vậy bài toán phụ đã được chứng minh
Áp dụng bài toán phụ vào biểu thức A (mình tạm gọi là A cho tiện) ta được:
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2018}-\sqrt{2017}\)
\(=\sqrt{2018}\)
Vậy, A = căn 2018
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
\(x^4-4x^2+4cx-c^2=0\)
\(\Leftrightarrow x^4-\left(2x-c\right)^2=0\)
\(\Leftrightarrow\left(x^2+2x-c\right)\left(x^2-2x+c\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x-c=0\left(1\right)\\x^2-2x+c=0\left(2\right)\end{cases}}\)
Để có 3 nghiệm thì ta xét 3 trường hợp
TH 1: PT (1) có 1 nghiệm là a còn PT 2 có 2 nghiệm khác nghiệm của PT 1:
\(\Rightarrow x^2+2x-c=\left(x-a\right)^2\)
\(\Leftrightarrow x^2+2x-c=x^2-2ax+a^2\)
\(\Rightarrow\hept{\begin{cases}-2a=2\\a^2=-c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\c=-1\end{cases}}\)
Thế lại vô PT (2) giải được
\(x^2-2x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-\sqrt{2}\\x=1+\sqrt{2}\end{cases}}\)(nhận)
TH 2: PT (2) có 1 nghiệm là b còn PT 1 có 2 nghiệm khác nghiệm của PT 2:
Làm tương tự như TH 1.
TH 3: PT (1), (2) có 2 nghiệm và có nghiệm chung là d.
\(\Rightarrow\hept{\begin{cases}d^2+2d-c=0\\d^2-2d+c=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c=0\\d=0\end{cases}}\)
Thế ngược lại ta có
\(x^4-4x^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2;+2\end{cases}}\) (nhận)