K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

Where is "z"?

20 tháng 3 2019

z ở đâu thế bạn ơi

sửa giùm đề nha

chúc bn hok tốt

20 tháng 3 2019

                                           Lời giải

\(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

Vậy:....

P/s: Lâu lâu chém bài dễ tí.

20 tháng 3 2019

Cho x2 - 4 = 0

=> x2 = 4

=> x = \(\pm2\)

Vậy \(\pm2\) là ngiệm của đa thức x2 - 4

20 tháng 3 2019

\(|x^{2018}+|x-1||=x^{2018}+2404\)

\(\Leftrightarrow\orbr{\begin{cases}x^{2018}+|x-1|=-x^{2018}-2404\\x^{2018}+|x-1|=x^{2018}+2404\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-\left(2x^{2018}+2404\right)\left(l\right)\\|x-1|=2404\left(n\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=-2404\\x-1=2404\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2403\\x=2405\end{cases}}}\)

V...

20 tháng 3 2019

\(\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)

Ta thấy: \(x^{2018}\ge0\);\(\left|x-1\right|\ge0\)\(\Rightarrow x^{2018}+\left|x-1\right|\ge0\)

\(\Rightarrow\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)

   \(\Leftrightarrow x^{2018}+\left|x-1\right|=x^{2018}+2404\) 

                          \(\left|x-1\right|=2404\)

\(\Rightarrow\orbr{\begin{cases}x-1=2404\\x-1=-2404\end{cases}}\Rightarrow\orbr{\begin{cases}x=2405\\x=-2403\end{cases}}\)

             Vậy \(x\in\left\{2405;-2403\right\}\)

    

20 tháng 3 2019

\(\Leftrightarrow\frac{x+4}{9}+\frac{x+11}{8}+\frac{x+16}{7}+\frac{x+19}{6}=10\)

\(\Leftrightarrow\left(\frac{x+4}{9}-1\right)+\left(\frac{x+11}{8}-2\right)+\left(\frac{x+16}{7}-3\right)+\left(\frac{x+19}{6}-4\right)=0\)

\(\Leftrightarrow\frac{x+4-9}{9}+\frac{x+11-16}{8}+\frac{x+16-21}{7}+\frac{x+19-24}{6}=0\)

\(\Leftrightarrow\frac{x-5}{9}+\frac{x-5}{8}+\frac{x-5}{7}+\frac{x-5}{6}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}\right)=0\)

\(\Leftrightarrow x-5=0\)

\(\Leftrightarrow x=5\)

V...

ta có tam giác BGD vuông tại G (BE ⊥ AD tại G )
=>BG^2+GD^2=BD^2
<=>BG^2+(AD/3)^2=AD^2(BD=AD=DC tính chất tam giác vuông )
<=>BG^2=8AD^2/9(1)
lại có tam giác ABG vuông tại G 
=>BG^2+AG^2=AB^2
<=>BG^2+(2AD/3)^2=6(2) 
từ (1) và (2) =>AD=3/căn 2
=>BC=2AD=6/căn2
tam giác ABC vuông tại A
=>AC^2=BC^2-AB^2
            =18-6
            =12
=>AC=2 căn 3

20 tháng 3 2019

mình đang cần cm tam giác vuông bạn ạ