Cho \(^{x^2+y^2+z^2=6}\).Tinhs gtln và gtnn của\(P=x+y+2z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
= \(\left(1+\frac{\left(b+c\right)^2-2bc-a^2}{2bc}\right).\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{\left(b+c\right)^2-2bc-\left(b-c\right)^2}{a+b+c}\)
= \(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)-2bc}{2bc}\right).\frac{a+b+c}{b+c-a}.\frac{\left(b+c-b+c\right)\left(b+c+b-c\right)-2bc}{a+b+c}\)
= \(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}-1\right).\frac{a+b+c}{b+c-a}.\frac{4bc-2bc}{a+b+c}\)
= \(\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}.\frac{2bc}{b+c-a}\)
= \(\frac{\left(b+c-a\right)\left(b+c+a\right)}{b+c-a}\)
= \(b+c+a\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
d) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
e) \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
f) mk chỉnh lại đề nha:
\(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)
g) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
h) \(x^2-10xy+25y^2=\left(x-5y\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Link giới thiệu đăng ký tài khoản Lazi.vn của Nguyễn Công Tỉnh | Lazi.vn - Cộng đồng Tri thức & Giáo dục
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E D 1 2 1 2
a, Ta có: góc ABC=góc ACB (t/g ABC cân tại A)
=> góc ABC/2 = góc ACB/2
=>góc B1 = góc B2 = góc C1 = góc C2
Xét t/g ADB và t/g AEC có:
góc B1 = góc C1 (cmt)
AB=AC (t/g ABC cân tại A)
góc A chung
=>t/g ADB = t/g AEC (g.c.g)
b, Vì t/g ADB = t/g AEC (câu a) => BD=CE (*), AE=AD
=> t/g AED cân tại A
=> góc AED = góc ADE = \(\frac{180^o-\widehat{A}}{2}\) (1)
Mà góc ABC=góc ACB = \(\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) => góc AED = góc ABC
Mà góc AED và góc ABC là cặp góc đồng vị
=> ED // BC (**)
Từ (*) và (**) => BEDC là hình thang cân
c, Vì BEDC là hình thang cân => BE=DC (3)
Từ (**) => góc EDB = góc B2 (so le trong)
Mà góc B1 = góc B2 (gt)
=>góc EDB = góc B1
=>t/g BED cân tại E
=>BE=ED (4)
Từ (3),(4) => BE=ED=DC
P/s: hình chỉ mang tính chất minh họa :v
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)
\(=3x^2+15x-3x^2+3x-18x+18+8\)
\(=18+8\)
\(=26\)
\(\Rightarrow\) Biểu thức không phụ thuộc vào biến
đpcm
a) 3x( x + 5 ) - ( 3x + 18 )( x - 1 ) + 8
= 3x2 + 15x - ( 3x2 + 15x - 18 ) + 8
= 3x2 + 15x - 3x2 - 15x + 18 + 8
= 26 ( đpcm )
b) ( 2x + 6 )( 4x2 - 12x + 36 ) - 8x3 + 5
= [ ( 2x )3 + 63 ] - 8x3 + 5
= 8x3 + 216 - 8x3 + 5
= 221
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác BEC có:
BM = MC ( vì AM là trung tuyến hay M là trung điểm BC )
FM //EC ( vì đường thẳng qua M và .// với EC cắt AB tại F )
=> BF = FE ( theo đường trung bình trong 1 tam giác )(đpcm)
b, tương tự, ta ap dụng với tam giác AFM có:
EI // FM ( vì EC // FM )
IA = IM ( I là trung điểm của AM )
=> E là trung điểm FA hay AE = EF
Theo câu a, ta được ; AE = EF = FB
Ta thấy: AB = AE + EF + FB = 3 AE hay AE = 1/3 AB (đpcm)
ta có
áp dụng bất đẳng thức Bunhia :
\(P^2=\left(x+y+2z\right)^2\le\left(1^2+1^2+2^2\right)\left(x^2+y^2+z^2\right)=6\times6=36\)
Do đó \(-6\le P\le6\text{ nên GTNN P= - 6, GTLN P =6}\)