K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

A B C D M N I H

Từ M kẻ đường thẳng vuông góc với AD cắt BD tại I. Hạ DH vuông góc BC tại H

Ta có: AB vuông góc AD; MI vuông góc AD => AB // MI => ^MIB = 1800 - ^ABD

Xét \(\Delta\)ADB: ^BAD = 900; AB=AD => \(\Delta\)ADB vuông cân tại A => ^ABD = 450

=> ^MIB = 1350 (1)

Dễ thấy tứ giác ADHB là hình vuông => DH=BH=AB=1/2BC => DH=BH=CH = 1/2BC

=> \(\Delta\)BDC vuông tại D => ^BDC = 900 => ^MDN = ^BDC + ^ADB = 900 + 450 = 1350 (2)

(1) + (2) => ^MIB = ^MDN

Xét \(\Delta\)MIB  & \(\Delta\)MDN: ^MIB = ^MDN; IM=DM (Dễ c/m); ^IMB = ^DMN (Cùng phụ ^IMN)

=> \(\Delta\)MIB = \(\Delta\)MDN (g.c.g) => MB=MN (đpcm).

11 tháng 7 2018

Mk c/m ngược lại có đc ko?

\(a,\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3\)

\(\Rightarrow a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

\(\Rightarrow a^3+b^3=a^3+b^3\left(dpcm\right)\)

\(b,\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)

\(\Rightarrow a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2=a^3-b^3\)

\(\Rightarrow a^3-b^3=a^3-b^3\left(dpcm\right)\)

11 tháng 7 2018

dở sach nâng cao và phát triển 8 ấy

11 tháng 7 2018

\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)

\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)

Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng:

a - 21-12-24-4
a31406-2

Vậy...

11 tháng 7 2018

bài này học từ mấu giáo rồi nhé , sao ghi là lớp 8 vậy

nói xàm lớp 8 chứ

11 tháng 7 2018

a. M, N là trung điểm của AD, BC => MN là đường trung bình của hình thang ABCD

=> \(MN=\frac{AB+CD}{2}\Leftrightarrow2MN=AB+CD\Leftrightarrow AB=2MN-CD=2.6-8=4\)

b. Vì MN là đường trung bình của hình thang ABCD => MN//AB <=> MP//AB

Mà M là trung điểm AD => P là trung điểm của BD

=> MP là đường trung bình trong tam giác ABD => MP=1/2 AB=1/2.4=2

Làm tương tự, có: QN=1/2AB = 2

=> PQ = MN - MP - QN = 6 - 2 - 2 = 2 

11 tháng 7 2018

ĐKXĐ: \(x\ne\pm1;-2\)

\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)

\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)

\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)

\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)

\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)

c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)

Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)

d. Ta có: \(P=\frac{3}{x+2}\inℤ\)

Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)

Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)

11 tháng 7 2018

\(\left(a+b+c\right)^2\)

\(\Rightarrow\left[\left(a+b\right)+c\right]^2\)

\(\Rightarrow\left(a+b\right)^2+2c\left(a+b\right)+c^2\)

\(\Rightarrow a^2+2ab+b^2+2ca+2bc+c^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\)

\(\left(a-b-c\right)^2\)

\(\Rightarrow\left[\left(a-b\right)-c\right]^2\)

\(\Rightarrow\left(a-b\right)^2-2c\left(a-b\right)+c^2\)

\(\Rightarrow a^2-2ab+b^2-2ca+2bc+c^2\)

\(\Rightarrow a^2+b^2+c^2-2ab+2bc-2ca\)

11 tháng 7 2018

ta có (a+b+c)^2 = (a+b+c).(a+b+c) =a^2+ab+ac+ab+b^2+bc+ac+bc+c^2 = a^2+b^2+c^2+2ab+2ac+2bc
   và   (a-b-c)^2 = (a-b-c)(a-b-c)     = a^2-ab-ac-(ab-b^2-bc)-(ac-cb-c^2)   =a^2-ab-ac-ab+b^2+bc-ac+cb+c^2=a^2 -2ab-2ac+bc+b^2+c^2

11 tháng 7 2018

Gọi biểu thức là A.

\(A=-5x^2+20x-49\)

\(A=-5x^2+20x-2-47\)

\(A=-\left(5x^2-20x+2\right)-47\)

\(A=-\left(5x-2\right)^2-47\)

Nhận xét:   \(-\left(5x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(5x-2\right)^2-47\le-47\forall x\)

Vậy biểu thức trên luôn âm với mọi x.